-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
640 lines (559 loc) · 20.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
from __future__ import annotations
import os
import json
from threading import Lock
from functools import partial
from typing import Iterator, List, Optional, Union, Dict
import uuid
import llama_cpp
import chatglm
import extends
import anyio
from anyio.streams.memory import MemoryObjectSendStream
from starlette.concurrency import run_in_threadpool, iterate_in_threadpool
from fastapi import Depends, FastAPI, APIRouter, Request, HTTPException, status, Body
from fastapi.middleware import Middleware
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security import HTTPBearer
from sse_starlette.sse import EventSourceResponse
from starlette_context.plugins import RequestIdPlugin # type: ignore
from starlette_context.middleware import RawContextMiddleware
from model import (
LlamaProxy,
)
from llama_cpp.server.settings import (
ConfigFileSettings,
Settings,
ModelSettings,
ServerSettings,
)
from llama_cpp.server.types import (
CreateCompletionRequest,
CreateEmbeddingRequest,
CreateChatCompletionRequest,
ModelList,
TokenizeInputRequest,
TokenizeInputResponse,
TokenizeInputCountResponse,
DetokenizeInputRequest,
DetokenizeInputResponse,
)
from llama_cpp.llama_types import (
ChatCompletionStreamResponseChoice,
ChatCompletionStreamResponseDelta,
ChatCompletionStreamResponseDeltaEmpty,
)
from llama_cpp.server.errors import RouteErrorHandler
router = APIRouter(route_class=RouteErrorHandler)
_server_settings: Optional[ServerSettings] = None
def set_server_settings(server_settings: ServerSettings):
global _server_settings
_server_settings = server_settings
def get_server_settings():
yield _server_settings
_llama_proxy: Optional[LlamaProxy] = None
llama_outer_lock = Lock()
llama_inner_lock = Lock()
def set_llama_proxy(model_settings: List[ModelSettings]):
global _llama_proxy
_llama_proxy = LlamaProxy(models=model_settings)
def get_llama_proxy():
# NOTE: This double lock allows the currently streaming llama model to
# check if any other requests are pending in the same thread and cancel
# the stream if so.
llama_outer_lock.acquire()
release_outer_lock = True
try:
llama_inner_lock.acquire()
try:
llama_outer_lock.release()
release_outer_lock = False
yield _llama_proxy
finally:
llama_inner_lock.release()
finally:
if release_outer_lock:
llama_outer_lock.release()
_ping_message_factory = None
def set_ping_message_factory(factory):
global _ping_message_factory
_ping_message_factory = factory
def create_app(
settings: Settings | None = None,
server_settings: ServerSettings | None = None,
model_settings: List[ModelSettings] | None = None,
):
config_file = os.environ.get("CONFIG_FILE", None)
if config_file is not None:
if not os.path.exists(config_file):
raise ValueError(f"Config file {config_file} not found!")
with open(config_file, "rb") as f:
# Check if yaml file
if config_file.endswith(".yaml") or config_file.endswith(".yml"):
import yaml
config_file_settings = ConfigFileSettings.model_validate_json(
json.dumps(yaml.safe_load(f))
)
else:
config_file_settings = ConfigFileSettings.model_validate_json(f.read())
server_settings = ServerSettings.model_validate(config_file_settings)
model_settings = config_file_settings.models
if server_settings is None and model_settings is None:
if settings is None:
settings = Settings()
server_settings = ServerSettings.model_validate(settings)
model_settings = [ModelSettings.model_validate(settings)]
assert (
server_settings is not None and model_settings is not None
), "server_settings and model_settings must be provided together"
set_server_settings(server_settings)
middleware = [Middleware(RawContextMiddleware, plugins=(RequestIdPlugin(),))]
app = FastAPI(
middleware=middleware,
title="🦙 llama.cpp Python API",
version=llama_cpp.__version__,
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.include_router(router)
assert model_settings is not None
set_llama_proxy(model_settings=model_settings)
if server_settings.disable_ping_events:
set_ping_message_factory(lambda: bytes())
return app
async def get_event_publisher(
request: Request,
inner_send_chan: MemoryObjectSendStream,
iterator: Iterator,
):
async with inner_send_chan:
try:
async for chunk in iterate_in_threadpool(iterator):
await inner_send_chan.send(dict(data=json.dumps(chunk)))
if await request.is_disconnected():
raise anyio.get_cancelled_exc_class()()
if (
next(get_server_settings()).interrupt_requests
and llama_outer_lock.locked()
):
await inner_send_chan.send(dict(data="[DONE]"))
raise anyio.get_cancelled_exc_class()()
await inner_send_chan.send(dict(data="[DONE]"))
except anyio.get_cancelled_exc_class() as e:
print("disconnected")
with anyio.move_on_after(1, shield=True):
print(f"Disconnected from client (via refresh/close) {request.client}")
raise e
def _logit_bias_tokens_to_input_ids(
llama: llama_cpp.Llama,
logit_bias: Dict[str, float],
) -> Dict[str, float]:
to_bias: Dict[str, float] = {}
for token, score in logit_bias.items():
token = token.encode("utf-8")
for input_id in llama.tokenize(token, add_bos=False, special=True):
to_bias[str(input_id)] = score
return to_bias
# Setup Bearer authentication scheme
bearer_scheme = HTTPBearer(auto_error=False)
async def authenticate(
settings: Settings = Depends(get_server_settings),
authorization: Optional[str] = Depends(bearer_scheme),
):
# Skip API key check if it's not set in settings
if settings.api_key is None:
return True
# check bearer credentials against the api_key
if authorization and authorization.credentials == settings.api_key:
# api key is valid
return authorization.credentials
# raise http error 401
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
)
openai_v1_tag = "OpenAI V1"
@router.post(
"/v1/completions",
summary="Completion",
dependencies=[Depends(authenticate)],
response_model=Union[
llama_cpp.CreateCompletionResponse,
str,
],
responses={
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"anyOf": [
{"$ref": "#/components/schemas/CreateCompletionResponse"}
],
"title": "Completion response, when stream=False",
}
},
"text/event-stream": {
"schema": {
"type": "string",
"title": "Server Side Streaming response, when stream=True. "
+ "See SSE format: https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format", # noqa: E501
"example": """data: {... see CreateCompletionResponse ...} \\n\\n data: ... \\n\\n ... data: [DONE]""",
}
},
},
}
},
tags=[openai_v1_tag],
)
@router.post(
"/v1/engines/copilot-codex/completions",
include_in_schema=False,
dependencies=[Depends(authenticate)],
tags=[openai_v1_tag],
)
async def create_completion(
request: Request,
body: CreateCompletionRequest,
llama_proxy: LlamaProxy = Depends(get_llama_proxy),
) -> llama_cpp.Completion:
if isinstance(body.prompt, list):
assert len(body.prompt) <= 1
body.prompt = body.prompt[0] if len(body.prompt) > 0 else ""
llama = llama_proxy(
body.model
if request.url.path != "/v1/engines/copilot-codex/completions"
else "copilot-codex"
)
exclude = {
"n",
"best_of",
"logit_bias_type",
"user",
}
kwargs = body.model_dump(exclude=exclude)
if body.logit_bias is not None:
kwargs["logit_bias"] = (
_logit_bias_tokens_to_input_ids(llama, body.logit_bias)
if body.logit_bias_type == "tokens"
else body.logit_bias
)
if body.grammar is not None:
kwargs["grammar"] = llama_cpp.LlamaGrammar.from_string(body.grammar)
iterator_or_completion: Union[
llama_cpp.CreateCompletionResponse,
Iterator[llama_cpp.CreateCompletionStreamResponse],
] = await run_in_threadpool(llama, **kwargs)
if isinstance(iterator_or_completion, Iterator):
# EAFP: It's easier to ask for forgiveness than permission
first_response = await run_in_threadpool(next, iterator_or_completion)
# If no exception was raised from first_response, we can assume that
# the iterator is valid and we can use it to stream the response.
def iterator() -> Iterator[llama_cpp.CreateCompletionStreamResponse]:
yield first_response
yield from iterator_or_completion
send_chan, recv_chan = anyio.create_memory_object_stream(10)
return EventSourceResponse(
recv_chan,
data_sender_callable=partial( # type: ignore
get_event_publisher,
request=request,
inner_send_chan=send_chan,
iterator=iterator(),
),
sep="\n",
ping_message_factory=_ping_message_factory,
)
else:
return iterator_or_completion
@router.post(
"/v1/embeddings",
summary="Embedding",
dependencies=[Depends(authenticate)],
tags=[openai_v1_tag],
)
async def create_embedding(
request: CreateEmbeddingRequest,
llama_proxy: LlamaProxy = Depends(get_llama_proxy),
):
return await run_in_threadpool(
llama_proxy(request.model).create_embedding,
**request.model_dump(exclude={"user"}),
)
@router.post(
"/v1/chat/completions",
summary="Chat",
dependencies=[Depends(authenticate)],
response_model=Union[llama_cpp.ChatCompletion, str],
responses={
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"anyOf": [
{
"$ref": "#/components/schemas/CreateChatCompletionResponse"
}
],
"title": "Completion response, when stream=False",
}
},
"text/event-stream": {
"schema": {
"type": "string",
"title": "Server Side Streaming response, when stream=True"
+ "See SSE format: https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format", # noqa: E501
"example": """data: {... see CreateChatCompletionResponse ...} \\n\\n data: ... \\n\\n ... data: [DONE]""",
}
},
},
}
},
tags=[openai_v1_tag],
)
async def create_chat_completion(
request: Request,
body: CreateChatCompletionRequest = Body(
openapi_examples={
"normal": {
"summary": "Chat Completion",
"value": {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the capital of France?"},
],
},
},
"json_mode": {
"summary": "JSON Mode",
"value": {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020"},
],
"response_format": {"type": "json_object"},
},
},
"tool_calling": {
"summary": "Tool Calling",
"value": {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Extract Jason is 30 years old."},
],
"tools": [
{
"type": "function",
"function": {
"name": "User",
"description": "User record",
"parameters": {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "number"},
},
"required": ["name", "age"],
},
},
}
],
"tool_choice": {
"type": "function",
"function": {
"name": "User",
},
},
},
},
"logprobs": {
"summary": "Logprobs",
"value": {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the capital of France?"},
],
"logprobs": True,
"top_logprobs": 10,
},
},
}
),
llama_proxy: LlamaProxy = Depends(get_llama_proxy),
) -> llama_cpp.ChatCompletion:
exclude = {
"n",
"logit_bias_type",
"user",
}
print(body)
kwargs = body.model_dump(exclude=exclude)
llama = llama_proxy(body.model)
if body.logit_bias is not None:
kwargs["logit_bias"] = (
_logit_bias_tokens_to_input_ids(llama, body.logit_bias)
if body.logit_bias_type == "tokens"
else body.logit_bias
)
if body.grammar is not None:
kwargs["grammar"] = llama_cpp.LlamaGrammar.from_string(body.grammar)
model_settings = llama_proxy._model_settings_dict[body.model]
model_chat_format = model_settings.chat_format
if model_chat_format == "chatglm":
max_context_length = model_settings.n_ctx
num_threads = model_settings.n_threads
chatglm_pipeline = llama
if body.stream:
iterator = chatglm.stream_chat(
chatglm_pipeline, body, max_context_length, num_threads
)
send_chan, recv_chan = anyio.create_memory_object_stream(10)
return EventSourceResponse(
recv_chan,
data_sender_callable=partial( # type: ignore
get_event_publisher,
request=request,
inner_send_chan=send_chan,
iterator=iterator,
),
sep="\n",
ping_message_factory=_ping_message_factory,
)
else:
return chatglm.create_chat_completion(
chatglm_pipeline, body, max_context_length, num_threads
)
if model_chat_format == "functionary-v2":
response = extends.functionary_chat( body,model_settings.model, llama)
if body.stream:
iterator = extends.functionary_stream_chat( body, response)
send_chan, recv_chan = anyio.create_memory_object_stream(10)
return EventSourceResponse(
recv_chan,
data_sender_callable=partial( # type: ignore
get_event_publisher,
request=request,
inner_send_chan=send_chan,
iterator=iterator,
),
sep="\n",
ping_message_factory=_ping_message_factory,
)
else:
return response
elif model_chat_format == "openfunctions":
if body.stream:
iterator = extends.openfunction_stream_chat( body, llama)
send_chan, recv_chan = anyio.create_memory_object_stream(10)
return EventSourceResponse(
recv_chan,
data_sender_callable=partial( # type: ignore
get_event_publisher,
request=request,
inner_send_chan=send_chan,
iterator=iterator,
),
sep="\n",
ping_message_factory=_ping_message_factory,
)
else:
return extends.handle_openfunction(body, llama)
elif model_chat_format == "firefunction":
return extends.handle_firefunction(body, llama)
else:
del kwargs["min_tokens"]
iterator_or_completion: Union[
llama_cpp.ChatCompletion, Iterator[llama_cpp.ChatCompletionChunk]
] = await run_in_threadpool(llama.create_chat_completion, **kwargs)
if isinstance(iterator_or_completion, Iterator):
# EAFP: It's easier to ask for forgiveness than permission
first_response = await run_in_threadpool(next, iterator_or_completion)
print(type(first_response))
print(first_response)
# If no exception was raised from first_response, we can assume that
# the iterator is valid and we can use it to stream the response.
def iterator() -> Iterator[llama_cpp.ChatCompletionChunk]:
yield first_response
yield from iterator_or_completion
send_chan, recv_chan = anyio.create_memory_object_stream(10)
return EventSourceResponse(
recv_chan,
data_sender_callable=partial( # type: ignore
get_event_publisher,
request=request,
inner_send_chan=send_chan,
iterator=iterator(),
),
sep="\n",
ping_message_factory=_ping_message_factory,
)
else:
return iterator_or_completion
@router.get(
"/v1/models",
summary="Models",
dependencies=[Depends(authenticate)],
tags=[openai_v1_tag],
)
async def get_models(
llama_proxy: LlamaProxy = Depends(get_llama_proxy),
) -> ModelList:
return {
"object": "list",
"data": [
{
"id": model_alias,
"object": "model",
"owned_by": "me",
"permissions": [],
}
for model_alias in llama_proxy
],
}
extras_tag = "Extras"
@router.post(
"/extras/tokenize",
summary="Tokenize",
dependencies=[Depends(authenticate)],
tags=[extras_tag],
)
async def tokenize(
body: TokenizeInputRequest,
llama_proxy: LlamaProxy = Depends(get_llama_proxy),
) -> TokenizeInputResponse:
tokens = llama_proxy(body.model).tokenize(body.input.encode("utf-8"), special=True)
return TokenizeInputResponse(tokens=tokens)
@router.post(
"/extras/tokenize/count",
summary="Tokenize Count",
dependencies=[Depends(authenticate)],
tags=[extras_tag],
)
async def count_query_tokens(
body: TokenizeInputRequest,
llama_proxy: LlamaProxy = Depends(get_llama_proxy),
) -> TokenizeInputCountResponse:
tokens = llama_proxy(body.model).tokenize(body.input.encode("utf-8"), special=True)
return TokenizeInputCountResponse(count=len(tokens))
@router.post(
"/extras/detokenize",
summary="Detokenize",
dependencies=[Depends(authenticate)],
tags=[extras_tag],
)
async def detokenize(
body: DetokenizeInputRequest,
llama_proxy: LlamaProxy = Depends(get_llama_proxy),
) -> DetokenizeInputResponse:
text = llama_proxy(body.model).detokenize(body.tokens).decode("utf-8")
return DetokenizeInputResponse(text=text)