-
Notifications
You must be signed in to change notification settings - Fork 1
/
settings.py
211 lines (196 loc) · 7.21 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from __future__ import annotations
import multiprocessing
from typing import Optional, List, Literal, Union
from pydantic import Field
from pydantic_settings import BaseSettings
import llama_cpp
# Disable warning for model and model_alias settings
BaseSettings.model_config["protected_namespaces"] = ()
class ModelSettings(BaseSettings):
"""Model settings used to load a Llama model."""
model: str = Field(
description="The path to the model to use for generating completions."
)
model_alias: Optional[str] = Field(
default=None,
description="The alias of the model to use for generating completions.",
)
# Model Params
n_gpu_layers: int = Field(
default=0,
ge=-1,
description="The number of layers to put on the GPU. The rest will be on the CPU. Set -1 to move all to GPU.",
)
split_mode: int = Field(
default=llama_cpp.LLAMA_SPLIT_MODE_LAYER,
description="The split mode to use.",
)
main_gpu: int = Field(
default=0,
ge=0,
description="Main GPU to use.",
)
tensor_split: Optional[List[float]] = Field(
default=None,
description="Split layers across multiple GPUs in proportion.",
)
vocab_only: bool = Field(
default=False, description="Whether to only return the vocabulary."
)
use_mmap: bool = Field(
default=llama_cpp.llama_supports_mmap(),
description="Use mmap.",
)
use_mlock: bool = Field(
default=llama_cpp.llama_supports_mlock(),
description="Use mlock.",
)
kv_overrides: Optional[List[str]] = Field(
default=None,
description="List of model kv overrides in the format key=type:value where type is one of (bool, int, float). Valid true values are (true, TRUE, 1), otherwise false.",
)
# Context Params
seed: int = Field(
default=llama_cpp.LLAMA_DEFAULT_SEED, description="Random seed. -1 for random."
)
n_ctx: int = Field(default=2048, ge=0, description="The context size.")
n_batch: int = Field(
default=512, ge=1, description="The batch size to use per eval."
)
n_threads: int = Field(
default=max(multiprocessing.cpu_count() // 2, 1),
ge=1,
description="The number of threads to use.",
)
n_threads_batch: int = Field(
default=max(multiprocessing.cpu_count(), 1),
ge=0,
description="The number of threads to use when batch processing.",
)
rope_scaling_type: int = Field(
default=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED
)
rope_freq_base: float = Field(default=0.0, description="RoPE base frequency")
rope_freq_scale: float = Field(
default=0.0, description="RoPE frequency scaling factor"
)
yarn_ext_factor: float = Field(default=-1.0)
yarn_attn_factor: float = Field(default=1.0)
yarn_beta_fast: float = Field(default=32.0)
yarn_beta_slow: float = Field(default=1.0)
yarn_orig_ctx: int = Field(default=0)
mul_mat_q: bool = Field(
default=True, description="if true, use experimental mul_mat_q kernels"
)
logits_all: bool = Field(default=True, description="Whether to return logits.")
embedding: bool = Field(default=True, description="Whether to use embeddings.")
offload_kqv: bool = Field(
default=True, description="Whether to offload kqv to the GPU."
)
# Sampling Params
last_n_tokens_size: int = Field(
default=64,
ge=0,
description="Last n tokens to keep for repeat penalty calculation.",
)
# LoRA Params
lora_base: Optional[str] = Field(
default=None,
description="Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.",
)
lora_path: Optional[str] = Field(
default=None,
description="Path to a LoRA file to apply to the model.",
)
# Backend Params
numa: Union[bool, int] = Field(
default=False,
description="Enable NUMA support.",
)
# Chat Format Params
chat_format: Optional[str] = Field(
default=None,
description="Chat format to use.",
)
clip_model_path: Optional[str] = Field(
default=None,
description="Path to a CLIP model to use for multi-modal chat completion.",
)
# Cache Params
cache: bool = Field(
default=False,
description="Use a cache to reduce processing times for evaluated prompts.",
)
cache_type: Literal["ram", "disk"] = Field(
default="ram",
description="The type of cache to use. Only used if cache is True.",
)
cache_size: int = Field(
default=2 << 30,
description="The size of the cache in bytes. Only used if cache is True.",
)
# Tokenizer Options
hf_tokenizer_config_path: Optional[str] = Field(
default=None,
description="The path to a HuggingFace tokenizer_config.json file.",
)
hf_pretrained_model_name_or_path: Optional[str] = Field(
default=None,
description="The model name or path to a pretrained HuggingFace tokenizer model. Same as you would pass to AutoTokenizer.from_pretrained().",
)
# Loading from HuggingFace Model Hub
hf_model_repo_id: Optional[str] = Field(
default=None,
description="The model repo id to use for the HuggingFace tokenizer model.",
)
# Speculative Decoding
draft_model: Optional[str] = Field(
default=None,
description="Method to use for speculative decoding. One of (prompt-lookup-decoding).",
)
draft_model_num_pred_tokens: int = Field(
default=10,
description="Number of tokens to predict using the draft model.",
)
# KV Cache Quantization
type_k: Optional[int] = Field(
default=None,
description="Type of the key cache quantization.",
)
type_v: Optional[int] = Field(
default=None,
description="Type of the value cache quantization.",
)
# Misc
verbose: bool = Field(
default=True, description="Whether to print debug information."
)
class ServerSettings(BaseSettings):
"""Server settings used to configure the FastAPI and Uvicorn server."""
# Uvicorn Settings
host: str = Field(default="localhost", description="Listen address")
port: int = Field(default=8000, description="Listen port")
ssl_keyfile: Optional[str] = Field(
default=None, description="SSL key file for HTTPS"
)
ssl_certfile: Optional[str] = Field(
default=None, description="SSL certificate file for HTTPS"
)
# FastAPI Settings
api_key: Optional[str] = Field(
default=None,
description="API key for authentication. If set all requests need to be authenticated.",
)
interrupt_requests: bool = Field(
default=True,
description="Whether to interrupt requests when a new request is received.",
)
disable_ping_events: bool = Field(
default=False,
description="Disable EventSource pings (may be needed for some clients).",
)
class Settings(ServerSettings, ModelSettings):
pass
class ConfigFileSettings(ServerSettings):
"""Configuration file format settings."""
models: List[ModelSettings] = Field(default=[], description="Model configs")