forked from Software-Aurora-Lab/DoppelTest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_ga_performance.py
403 lines (333 loc) · 12.4 KB
/
main_ga_performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import json
import os
import pickle
import shutil
from collections import defaultdict
from copy import deepcopy
from datetime import datetime
from random import randint, random, sample, shuffle
import numpy as np
from deap import algorithms, base, tools
from apollo.ApolloContainer import ApolloContainer
from config import (APOLLO_ROOT, HD_MAP, MAX_ADC_COUNT, MAX_PD_COUNT,
RECORDS_DIR, RUN_FOR_HOUR)
from framework.oracles import RecordAnalyzer
from framework.oracles.ViolationTracker import ViolationTracker
from framework.scenario import Scenario
from framework.scenario.ad_agents import ADAgent, ADSection
from framework.scenario.pd_agents import PDAgent, PDSection
from framework.scenario.ScenarioRunner import ScenarioRunner
from framework.scenario.tc_config import TCSection
from hdmap.MapParser import MapParser
from utils import get_logger, remove_record_files
# EVALUATION (FITNESS)
performance_tracker = defaultdict(lambda: list())
def eval_scenario(ind: Scenario):
g_name = f'Generation_{ind.gid:05}'
s_name = f'Scenario_{ind.cid:05}'
srunner = ScenarioRunner.get_instance()
srunner.set_scenario(ind)
__t_init_start = datetime.now()
srunner.init_scenario()
__t_init_finish = datetime.now()
performance_tracker['scenario_init'].append((__t_init_finish - __t_init_start).total_seconds())
__t_scenario_start = datetime.now()
runners = srunner.run_scenario(g_name, s_name, True)
__t_scenario_finish = datetime.now()
performance_tracker['scenario_run'].append((__t_scenario_finish - __t_scenario_start).total_seconds())
__t_analysis_start = datetime.now()
obs_routing_map = dict()
for a, r in runners:
obs_routing_map[a.nid] = r.routing_str
unique_violation = 0
duplicate_violation = 0
min_distance = list()
decisions = set()
for a, r in runners:
min_distance.append(a.get_min_distance())
decisions.update(a.get_decisions())
c_name = a.container.container_name
r_name = f"{c_name}.{s_name}.00000"
record_path = os.path.join(RECORDS_DIR, g_name, s_name, r_name)
ra = RecordAnalyzer(record_path)
ra.analyze()
for v in ra.get_results():
main_type = v[0]
sub_type = v[1]
if main_type == 'collision':
if sub_type < 100:
# pedestrian collisoin
related_data = frozenset(
[r.routing_str, ind.pd_section.pds[sub_type].cw_id])
sub_type = 'A&P'
else:
# adc to adc collision
related_data = frozenset(
[r.routing_str, obs_routing_map[sub_type]]
)
sub_type = 'A&A'
else:
related_data = r.routing_str
if ViolationTracker.get_instance().add_violation(
gname=g_name,
sname=s_name,
record_file=record_path,
mt=main_type,
st=sub_type,
data=related_data
):
unique_violation += 1
ma = MapParser.get_instance(HD_MAP)
conflict = ind.has_ad_conflict()
if unique_violation == 0:
# no unique violation, remove records
remove_record_files(g_name, s_name)
pass
__t_analysis_finish = datetime.now()
performance_tracker['scenario_analysis'].append((__t_analysis_finish - __t_analysis_start).total_seconds())
return min(min_distance), len(decisions), conflict, unique_violation
# MUTATION OPERATOR
def mut_ad_section(ind: ADSection):
mut_pb = random()
# remove a random 1
if mut_pb < 0.1 and len(ind.adcs) > 2:
shuffle(ind.adcs)
ind.adcs.pop()
ind.adjust_time()
return ind
# add a random 1
trial = 0
if mut_pb < 0.4 and len(ind.adcs) < MAX_ADC_COUNT:
while True:
new_ad = ADAgent.get_one(trial < 15)
if ind.has_conflict(new_ad) and ind.add_agent(new_ad):
break
elif trial > 15 and ind.add_agent(new_ad):
break
ind.adjust_time()
return ind
# mutate a random agent
index = randint(0, len(ind.adcs) - 1)
routing = ind.adcs[index].routing
original_adc = ind.adcs.pop(index)
mut_counter = 0
while True:
if ind.add_agent(ADAgent.get_one_for_routing(routing)):
break
mut_counter += 1
if mut_counter == 5:
# mutation kept failing, dont mutate
ind.add_agent(original_adc)
break
ind.adjust_time()
return ind
def mut_pd_section(ind: PDSection):
if len(ind.pds) == 0:
ind.add_agent(PDAgent.get_one())
return ind
mut_pb = random()
# remove a random
if mut_pb < 0.2 and len(ind.pds) > 0:
shuffle(ind.pds)
ind.pds.pop()
return ind
# add a random
if mut_pb < 0.4 and len(ind.pds) <= MAX_PD_COUNT:
ind.pds.append(PDAgent.get_one())
return ind
# mutate a random
index = randint(0, len(ind.pds) - 1)
ind.pds[index] = PDAgent.get_one_for_cw(ind.pds[index].cw_id)
return ind
def mut_tc_section(ind: TCSection):
mut_pb = random()
if mut_pb < 0.3:
ind.initial = TCSection.generate_config()
return ind
elif mut_pb < 0.6:
ind.final = TCSection.generate_config()
elif mut_pb < 0.9:
ind.duration_g = TCSection.get_random_duration_g()
return TCSection.get_one()
def mut_scenario(ind: Scenario):
mut_pb = random()
if mut_pb < 1/3:
ind.ad_section = mut_ad_section(ind.ad_section)
elif mut_pb < 2/3:
ind.pd_section = mut_pd_section(ind.pd_section)
else:
ind.tc_section = mut_tc_section(ind.tc_section)
return ind,
# CROSSOVER OPERATOR
def cx_ad_section(ind1: ADSection, ind2: ADSection):
# swap entire ad section
cx_pb = random()
if cx_pb < 0.05:
return ind2, ind1
cxed = False
for adc1 in ind1.adcs:
for adc2 in ind2.adcs:
if adc1.routing_str == adc2.routing_str:
# same routing in both parents
# swap start_s and start_t
if random() < 0.5:
adc1.start_s = adc2.start_s
else:
adc1.start_t = adc2.start_t
mutated = True
if cxed:
ind1.adjust_time()
return ind1, ind2
if len(ind1.adcs) < MAX_ADC_COUNT:
for adc in ind2.adcs:
if ind1.has_conflict(adc) and ind1.add_agent(deepcopy(adc)):
# add an agent from parent 2 to parent 1 if there exists a conflict
ind1.adjust_time()
return ind1, ind2
# if none of the above happened, no common adc, no conflict in either
# combine to make a new populations
available_adcs = ind1.adcs + ind2.adcs
shuffle(available_adcs)
split_index = randint(2, min(len(available_adcs), MAX_ADC_COUNT))
result1 = ADSection([])
for x in available_adcs[:split_index]:
result1.add_agent(deepcopy(x))
# make sure offspring adc count is valid
while len(result1.adcs) > MAX_ADC_COUNT:
result1.adcs.pop()
trial = 0
while len(result1.adcs) < 2:
new_ad = ADAgent.get_one(trial < 15)
if result1.has_conflict(new_ad) and result1.add_agent(new_ad):
break
elif trial > 15 and result1.add_agent(new_ad):
break
result1.adjust_time()
return result1, ind2
def cx_pd_section(ind1: PDSection, ind2: PDSection):
cx_pb = random()
if cx_pb < 0.1:
return ind2, ind1
available_pds = ind1.pds + ind2.pds
result1 = PDSection(
sample(available_pds, k=randint(0, min(MAX_PD_COUNT, len(available_pds)))))
result2 = PDSection(
sample(available_pds, k=randint(0, min(MAX_PD_COUNT, len(available_pds)))))
return result1, result2
def cx_tc_section(ind1: TCSection, ind2: TCSection):
cx_pb = random()
if cx_pb < 0.1:
return ind2, ind1
elif cx_pb < 0.4:
ind1.initial, ind2.initial = ind2.initial, ind1.initial
elif cx_pb < 0.7:
ind1.final, ind2.final = ind2.final, ind1.final
else:
ind1.duration_g, ind2.duration_g = ind2.duration_g, ind1.duration_g
return ind1, ind2
def cx_scenario(ind1: Scenario, ind2: Scenario):
cx_pb = random()
if cx_pb < 0.6:
ind1.ad_section, ind2.ad_section = cx_ad_section(
ind1.ad_section, ind2.ad_section
)
elif cx_pb < 0.6 + 0.2:
ind1.pd_section, ind2.pd_section = cx_pd_section(
ind1.pd_section, ind2.pd_section
)
else:
ind1.tc_section, ind2.tc_section = cx_tc_section(
ind1.tc_section, ind2.tc_section
)
return ind1, ind2
# MAIN
def main():
logger = get_logger('MAIN')
__t_map_analysis_start = datetime.now()
mp = MapParser.get_instance(HD_MAP)
__t_map_analysis_finish = datetime.now()
performance_tracker['map_parser'].append((__t_map_analysis_finish - __t_map_analysis_start).total_seconds())
containers = [ApolloContainer(
APOLLO_ROOT, f'ROUTE_{x}') for x in range(MAX_ADC_COUNT)]
for ctn in containers:
__t_ctn_start = datetime.now()
ctn.start_instance()
ctn.start_dreamview()
print(f'Dreamview at http://{ctn.ip}:{ctn.port}')
__t_ctn_finish = datetime.now()
performance_tracker['ctn_start'].append((__t_ctn_finish - __t_ctn_start).total_seconds())
srunner = ScenarioRunner(containers)
vt = ViolationTracker()
# GA Hyperparameters
POP_SIZE = 10 # number of population
OFF_SIZE = 10 # number of offspring to produce
CXPB = 0.8 # crossover probablitiy
MUTPB = 0.2 # mutation probability
toolbox = base.Toolbox()
toolbox.register("evaluate", eval_scenario)
toolbox.register("mate", cx_scenario)
toolbox.register("mutate", mut_scenario)
toolbox.register("select", tools.selNSGA2)
# start GA
start_time = datetime.now()
population = [Scenario.get_conflict_one() for _ in range(POP_SIZE)]
for index, c in enumerate(population):
c.gid = 0
c.cid = index
hof = tools.ParetoFront()
# Evaluate Initial Population
logger.info(f' ====== Analyzing Initial Population ====== ')
invalid_ind = [ind for ind in population if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
hof.update(population)
stats = tools.Statistics(key=lambda ind: ind.fitness.values)
stats.register("avg", np.mean, axis=0)
stats.register("max", np.max, axis=0)
stats.register("min", np.min, axis=0)
logbook = tools.Logbook()
logbook.header = 'gen', 'avg', 'max', 'min'
# begin generational process
curr_gen = 0
while True:
curr_gen += 1
logger.info(f' ====== GA Generation {curr_gen} ====== ')
# Vary the population
__t_ga_start = datetime.now()
offspring = algorithms.varOr(
population, toolbox, OFF_SIZE, CXPB, MUTPB)
__t_ga_finish = datetime.now()
performance_tracker['ga_operation'].append(
(__t_ga_finish - __t_ga_start).total_seconds()
)
# update chromosome gid and cid
for index, c in enumerate(offspring):
c.gid = curr_gen
c.cid = index
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
hof.update(offspring)
# Select the next generation population
population[:] = toolbox.select(population + offspring, POP_SIZE)
record = stats.compile(population)
logbook.record(gen=curr_gen, **record)
print(logbook.stream)
vt.save_to_file()
with open('./data/log.bin', 'wb') as fp:
pickle.dump(logbook, fp)
with open('./data/hof.bin', 'wb') as fp:
pickle.dump(hof, fp)
curr_time = datetime.now()
tdelta = (curr_time - start_time).total_seconds()
if tdelta / 3600 > RUN_FOR_HOUR:
break
# performance output
print(performance_tracker)
with open('performance.json', 'w') as fp:
json.dump(performance_tracker, fp, indent=4)
if __name__ == '__main__':
main()