-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmachine learning12 - Decision Tree.py
116 lines (72 loc) · 2.27 KB
/
machine learning12 - Decision Tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# -*- coding: utf-8 -*-
"""
Created on June 18 2022
@author: Yunus GÜMÜŞSOY
"""
#1.kutuphaneler
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#2.veri onisleme
#2.1.veri yukleme
veriler = pd.read_csv('veriler.csv')
#pd.read_csv("veriler.csv")
#test
print(veriler)
x = veriler.iloc[:,1:4].values #bağımsız değişkenler
y = veriler.iloc[:,4:].values #bağımlı değişken
print(y)
#verilerin egitim ve test icin bolunmesi
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=0)
#verilerin olceklenmesi
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
# fit eğitim
X_train = sc.fit_transform(x_train)
# transform uygulama
X_test = sc.transform(x_test)
from sklearn.linear_model import LogisticRegression
logr = LogisticRegression(random_state=0)
logr.fit(X_train,y_train)
y_pred = logr.predict(X_test)
print(y_pred)
print(y_test)
# Confusion Matrix
# Karmaşıklık matrisi
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
print(cm)
# K Nearest Neighborhood
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1, metric = 'minkowski')
# komşu sayısını değiştirerek deneyebiliriz, bu örnekte az komşu ile daha başarılı tahminler oldu
# knn = KNeighborsClassifier(n_neighbors=5, metric = 'minkowski')
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
print (cm)
# Support Vector Machines
from sklearn.svm import SVC
svc = SVC(kernel='poly') # linear, rbf, sigmoid
svc.fit(X_train,y_train)
y_pred = svc.predict(X_test)
cm = confusion_matrix(y_test,y_pred)
print('SVC')
print(cm)
# Naive Bayes
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X_train, y_train)
y_pred = gnb.predict(X_test)
cm = confusion_matrix(y_test,y_pred)
print('GNB')
print(cm)
# Decision Tree
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier(criterion = 'entropy') # Gini
dtc.fit(X_train,y_train)
y_pred = dtc.predict(X_test)
cm = confusion_matrix(y_test,y_pred)
print('DTC')
print(cm)