-
Notifications
You must be signed in to change notification settings - Fork 9
/
finetune.py
209 lines (165 loc) · 8.07 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
############################################################
# Code for FiT3D
# by Yuanwen Yue
# Stage 2: 3D-aware fine-tuning
############################################################
import argparse
import datetime
import json
import random
import os
import time
from pathlib import Path
import numpy as np
import wandb
import torch
from torch.utils.data import DataLoader
import utils.misc as utils
from datasets import build_dataset
from engine import evaluate_one_epoch, train_one_epoch
from utils.loss_utils import l1_loss
from utils.model_utils import build_2d_model
def get_args_parser():
parser = argparse.ArgumentParser('FiT3D', add_help=False)
parser.add_argument('--lr', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=1, type=int)
parser.add_argument('--lr_drop', default=[1], type=list)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument("--model_name", default='dinov2_small', type=str, help='2D feature extractor. Select from \
dinov2_small, dinov2_base, dinov2_reg_small, clip_base, mae_base, deit3_base')
parser.add_argument('--output_dir', default='output_finemodel',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=0, type=int)
parser.add_argument('--job_name', default='finetuning_dinov2_small', type=str)
parser.add_argument('--dataset_root', default='db/scannetpp/scenes', type=str)
parser.add_argument('--train_list', default='db/scannetpp/metadata/train_samples_all.txt', type=str)
parser.add_argument('--val_list', default='db/scannetpp/metadata/val_samples_all.txt', type=str)
parser.add_argument('--train_gaussian_list', default='db/scannetpp/metadata/pretrained_feat_gaussians_train.pth', type=str)
parser.add_argument('--val_gaussian_list', default='db/scannetpp/metadata/pretrained_feat_gaussians_val.pth', type=str)
parser.add_argument('--train_view_list', default='db/scannetpp/metadata/train_view_info.npy', type=str)
parser.add_argument('--val_view_list', default='db/scannetpp/metadata/val_view_info.npy', type=str)
return parser
def main(args):
print(args)
# setup wandb for logging
utils.setup_wandb()
wandb.init(project="FiT3D")
wandb.run.name = args.run_name
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# build model
model = build_2d_model(model_name=args.model_name)
model.to(device)
# loss
criterion = l1_loss
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
# build dataset and dataloader
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
def trivial_batch_collator(batch):
"""
A batch collator that does nothing.
"""
return batch
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=trivial_batch_collator, num_workers=args.num_workers,
pin_memory=True)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=trivial_batch_collator, num_workers=args.num_workers,
pin_memory=True)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.lr_drop)
output_dir = Path(args.output_dir)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
missing_keys, unexpected_keys = model.load_state_dict(checkpoint['model'], strict=False)
unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))]
if len(missing_keys) > 0:
print('Missing Keys: {}'.format(missing_keys))
if len(unexpected_keys) > 0:
print('Unexpected Keys: {}'.format(unexpected_keys))
if 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
import copy
p_groups = copy.deepcopy(optimizer.param_groups)
optimizer.load_state_dict(checkpoint['optimizer'])
for pg, pg_old in zip(optimizer.param_groups, p_groups):
pg['lr'] = pg_old['lr']
pg['initial_lr'] = pg_old['initial_lr']
print(optimizer.param_groups)
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
lr_scheduler.step(lr_scheduler.last_epoch)
args.start_epoch = checkpoint['epoch'] + 1
# check the resumed model
val_stats = evaluate_one_epoch(
model, criterion, data_loader_val, device
)
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm
)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
if (epoch + 1) in args.lr_drop or (epoch + 1) % 1 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
torch.save({
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
val_stats = evaluate_one_epoch(
model, criterion, data_loader_val, device
)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in val_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
wandb.log({"lr_rate": train_stats['lr']})
train_log_dict = {
"train/epoch": epoch,
"train/loss_epoch": train_stats['loss'],
}
val_log_dict = {
"val/loss": val_stats['loss'],
}
wandb.log(train_log_dict)
wandb.log(val_log_dict)
if args.output_dir:
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('3D-aware fine-tuning script', parents=[get_args_parser()])
args = parser.parse_args()
now = datetime.datetime.now()
run_id = now.strftime("%Y-%m-%d-%H-%M-%S")
args.run_name = run_id+'_'+args.job_name
args.output_dir = os.path.join(args.output_dir, args.run_name)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)