-
Notifications
You must be signed in to change notification settings - Fork 45
/
utils.py
99 lines (73 loc) · 2.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import glob
import torch
import torch.nn as nn
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt
def plot_spectrogram(spectrogram):
fig, ax = plt.subplots(figsize=(4, 3))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
fig.canvas.draw()
plt.close()
return fig
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
def get_padding_2d(kernel_size, dilation=(1, 1)):
return (int((kernel_size[0]*dilation[0] - dilation[0])/2), int((kernel_size[1]*dilation[1] - dilation[1])/2))
class LearnableSigmoid1d(nn.Module):
def __init__(self, in_features, beta=1):
super().__init__()
self.beta = beta
self.slope = nn.Parameter(torch.ones(in_features))
self.slope.requiresGrad = True
def forward(self, x):
return self.beta * torch.sigmoid(self.slope * x)
class LearnableSigmoid2d(nn.Module):
def __init__(self, in_features, beta=1):
super().__init__()
self.beta = beta
self.slope = nn.Parameter(torch.ones(in_features, 1))
self.slope.requiresGrad = True
def forward(self, x):
return self.beta * torch.sigmoid(self.slope * x)
class Sigmoid2d(nn.Module):
def __init__(self, in_features, beta=1):
super().__init__()
self.beta = beta
self.slope = torch.ones(in_features, 1)
def forward(self, x):
return self.beta * torch.sigmoid(self.slope * x)
class PLSigmoid(nn.Module):
def __init__(self, in_features):
super().__init__()
self.beta = nn.Parameter(torch.ones(in_features, 1) * 2.0)
self.slope = nn.Parameter(torch.ones(in_features, 1))
self.beta.requiresGrad = True
self.slope.requiresGrad = True
def forward(self, x):
return self.beta * torch.sigmoid(self.slope * x)
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def save_checkpoint(filepath, obj):
print("Saving checkpoint to {}".format(filepath))
torch.save(obj, filepath)
print("Complete.")
def scan_checkpoint(cp_dir, prefix):
pattern = os.path.join(cp_dir, prefix + '????????')
cp_list = glob.glob(pattern)
if len(cp_list) == 0:
return None
return sorted(cp_list)[-1]
def main():
plsigmoid = PLSigmoid(201)
a = torch.randn(4, 201, 100)
print(plsigmoid(a))
if __name__ == '__main__':
main()