Skip to content

Latest commit

 

History

History
37 lines (30 loc) · 1.9 KB

README.md

File metadata and controls

37 lines (30 loc) · 1.9 KB

PyTorch Implementation of MobileNet V3

Reproduction of MobileNet V3 architecture as described in Searching for MobileNetV3 by Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam on ILSVRC2012 benchmark with PyTorch framework.

Requirements

Dataset

Download the ImageNet dataset and move validation images to labeled subfolders. To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

Models

Architecture # Parameters MFLOPs Top-1 / Top-5 Accuracy (%)
MobileNetV3-Large 1.0 5.481M 216.60 74.256 / 91.918
MobileNetV3-Large 0.75 3.913M 140.58
MobileNetV3-Small 1.0 2.537M 56.51 67.220 / 87.260
MobileNetV3-Small 0.75 2.009M 39.48
from mobilenetv3 import mobilenetv3_large, mobilenetv3_small

net_large = mobilenetv3_large()
net_small = mobilenetv3_small()

net_large.load_state_dict(torch.load('pretrained/mobilenetv3-large-b4e262ea.pth'))
net_small.load_state_dict(torch.load('pretrained/mobilenetv3-small-547c1152.pth'))

Citation

@InProceedings{Howard_2019_ICCV,
author = {Howard, Andrew and Sandler, Mark and Chu, Grace and Chen, Liang-Chieh and Chen, Bo and Tan, Mingxing and Wang, Weijun and Zhu, Yukun and Pang, Ruoming and Vasudevan, Vijay and Le, Quoc V. and Adam, Hartwig},
title = {Searching for MobileNetV3},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}