Reproduction of MobileNet V3 architecture as described in Searching for MobileNetV3 by Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam on ILSVRC2012 benchmark with PyTorch framework.
Download the ImageNet dataset and move validation images to labeled subfolders. To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh
Architecture | # Parameters | MFLOPs | Top-1 / Top-5 Accuracy (%) |
---|---|---|---|
MobileNetV3-Large 1.0 | 5.481M | 216.60 | 74.256 / 91.918 |
MobileNetV3-Large 0.75 | 3.913M | 140.58 | |
MobileNetV3-Small 1.0 | 2.537M | 56.51 | 67.220 / 87.260 |
MobileNetV3-Small 0.75 | 2.009M | 39.48 |
from mobilenetv3 import mobilenetv3_large, mobilenetv3_small
net_large = mobilenetv3_large()
net_small = mobilenetv3_small()
net_large.load_state_dict(torch.load('pretrained/mobilenetv3-large-b4e262ea.pth'))
net_small.load_state_dict(torch.load('pretrained/mobilenetv3-small-547c1152.pth'))
@InProceedings{Howard_2019_ICCV,
author = {Howard, Andrew and Sandler, Mark and Chu, Grace and Chen, Liang-Chieh and Chen, Bo and Tan, Mingxing and Wang, Weijun and Zhu, Yukun and Pang, Ruoming and Vasudevan, Vijay and Le, Quoc V. and Adam, Hartwig},
title = {Searching for MobileNetV3},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}