-
Notifications
You must be signed in to change notification settings - Fork 32
/
evaluate_tDCF_asvspoof19.py
121 lines (95 loc) · 4.99 KB
/
evaluate_tDCF_asvspoof19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import numpy as np
import eval_metrics as em
import matplotlib.pyplot as plt
def compute_eer_and_tdcf(cm_score_file, path_to_database):
asv_score_file = os.path.join(path_to_database, 'LA/ASVspoof2019_LA_asv_scores/ASVspoof2019.LA.asv.eval.gi.trl.scores.txt')
# Fix tandem detection cost function (t-DCF) parameters
Pspoof = 0.05
cost_model = {
'Pspoof': Pspoof, # Prior probability of a spoofing attack
'Ptar': (1 - Pspoof) * 0.99, # Prior probability of target speaker
'Pnon': (1 - Pspoof) * 0.01, # Prior probability of nontarget speaker
'Cmiss_asv': 1, # Cost of ASV system falsely rejecting target speaker
'Cfa_asv': 10, # Cost of ASV system falsely accepting nontarget speaker
'Cmiss_cm': 1, # Cost of CM system falsely rejecting target speaker
'Cfa_cm': 10, # Cost of CM system falsely accepting spoof
}
# Load organizers' ASV scores
asv_data = np.genfromtxt(asv_score_file, dtype=str)
asv_sources = asv_data[:, 0]
asv_keys = asv_data[:, 1]
asv_scores = asv_data[:, 2].astype(np.float)
# Load CM scores
cm_data = np.genfromtxt(cm_score_file, dtype=str)
cm_utt_id = cm_data[:, 0]
cm_sources = cm_data[:, 1]
cm_keys = cm_data[:, 2]
cm_scores = cm_data[:, 3].astype(np.float)
other_cm_scores = -cm_scores
# Extract target, nontarget, and spoof scores from the ASV scores
tar_asv = asv_scores[asv_keys == 'target']
non_asv = asv_scores[asv_keys == 'nontarget']
spoof_asv = asv_scores[asv_keys == 'spoof']
# Extract bona fide (real human) and spoof scores from the CM scores
bona_cm = cm_scores[cm_keys == 'bonafide']
spoof_cm = cm_scores[cm_keys == 'spoof']
# EERs of the standalone systems and fix ASV operating point to EER threshold
eer_asv, asv_threshold = em.compute_eer(tar_asv, non_asv)
eer_cm = em.compute_eer(bona_cm, spoof_cm)[0]
other_eer_cm = em.compute_eer(other_cm_scores[cm_keys == 'bonafide'], other_cm_scores[cm_keys == 'spoof'])[0]
[Pfa_asv, Pmiss_asv, Pmiss_spoof_asv] = em.obtain_asv_error_rates(tar_asv, non_asv, spoof_asv, asv_threshold)
if eer_cm < other_eer_cm:
# Compute t-DCF
tDCF_curve, CM_thresholds = em.compute_tDCF(bona_cm, spoof_cm, Pfa_asv, Pmiss_asv, Pmiss_spoof_asv, cost_model, True)
# Minimum t-DCF
min_tDCF_index = np.argmin(tDCF_curve)
min_tDCF = tDCF_curve[min_tDCF_index]
else:
tDCF_curve, CM_thresholds = em.compute_tDCF(other_cm_scores[cm_keys == 'bonafide'], other_cm_scores[cm_keys == 'spoof'],
Pfa_asv, Pmiss_asv, Pmiss_spoof_asv, cost_model, True)
# Minimum t-DCF
min_tDCF_index = np.argmin(tDCF_curve)
min_tDCF = tDCF_curve[min_tDCF_index]
# print('ASV SYSTEM')
# print(' EER = {:8.5f} % (Equal error rate (target vs. nontarget discrimination)'.format(eer_asv * 100))
# print(' Pfa = {:8.5f} % (False acceptance rate of nontargets)'.format(Pfa_asv * 100))
# print(' Pmiss = {:8.5f} % (False rejection rate of targets)'.format(Pmiss_asv * 100))
# print(' 1-Pmiss,spoof = {:8.5f} % (Spoof false acceptance rate)'.format((1 - Pmiss_spoof_asv) * 100))
print('\nCM SYSTEM')
print(' EER = {:8.5f} % (Equal error rate for countermeasure)'.format(min(eer_cm, other_eer_cm) * 100))
print('\nTANDEM')
print(' min-tDCF = {:8.5f}'.format(min_tDCF))
# Visualize ASV scores and CM scores
plt.figure()
ax = plt.subplot(121)
plt.hist(tar_asv, histtype='step', density=True, bins=50, label='Target')
plt.hist(non_asv, histtype='step', density=True, bins=50, label='Nontarget')
plt.hist(spoof_asv, histtype='step', density=True, bins=50, label='Spoof')
plt.plot(asv_threshold, 0, 'o', markersize=10, mfc='none', mew=2, clip_on=False, label='EER threshold')
plt.legend()
plt.xlabel('ASV score')
plt.ylabel('Density')
plt.title('ASV score histogram')
ax = plt.subplot(122)
plt.hist(bona_cm, histtype='step', density=True, bins=50, label='Bona fide')
plt.hist(spoof_cm, histtype='step', density=True, bins=50, label='Spoof')
plt.legend()
plt.xlabel('CM score')
# plt.ylabel('Density')
plt.title('CM score histogram')
plt.savefig(cm_score_file[:-4]+'1.png')
# Plot t-DCF as function of the CM threshold.
plt.figure()
plt.plot(CM_thresholds, tDCF_curve)
plt.plot(CM_thresholds[min_tDCF_index], min_tDCF, 'o', markersize=10, mfc='none', mew=2)
plt.xlabel('CM threshold index (operating point)')
plt.ylabel('Norm t-DCF')
plt.title('Normalized tandem t-DCF')
plt.plot([np.min(CM_thresholds), np.max(CM_thresholds)], [1, 1], '--', color='black')
plt.legend(('t-DCF', 'min t-DCF ({:.5f})'.format(min_tDCF), 'Arbitrarily bad CM (Norm t-DCF=1)'))
plt.xlim([np.min(CM_thresholds), np.max(CM_thresholds)])
plt.ylim([0, 1.5])
plt.savefig(cm_score_file[:-4]+'2.png')
plt.show()
return min(eer_cm, other_eer_cm), min_tDCF