-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
321 lines (262 loc) · 10.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import numpy as np
import pandas as pd
from functools import partial
from itertools import combinations
from math import factorial
import torch
from torch.autograd import Variable
from types import FunctionType, MethodType
import warnings
import requests
import os
from urllib.parse import urlparse
import zipfile
from decimal import Decimal, ROUND_HALF_UP
W = 'w'
T = 't'
Y = 'y'
NUMPY = 'numpy'
PANDAS = 'pandas'
PANDAS_SINGLE = 'pandas_single'
TORCH = 'torch'
DATA_FOLDER = 'datasets'
def to_data_format(data_format, w, t, y):
format_to_func = {
NUMPY: to_np_arrays,
PANDAS: partial(to_pandas, single_df=False),
PANDAS_SINGLE: partial(to_pandas, single_df=True),
TORCH: to_tensors,
}
if data_format in format_to_func.keys():
return format_to_func[data_format](w, t, y)
else:
raise ValueError('Invalid data format: {} ... Valid formats: {}'.format(data_format, list(format_to_func.keys())))
def to_pandas(w, t, y, single_df=False):
"""
Convert array-like w, t, and y to Pandas DataFrame
:param w: 1d or 2d np array, list, or tuple of covariates
:param t: 1d np array, list, or tuple of treatments
:param y: 1d np array, list, or tuple of outcomes
:param single_df: whether to return single DataFrame or 1 DataFrame and 2 Series
:return: (DataFrame of w, Series of t, Series of y)
"""
if isinstance(w, pd.DataFrame) and isinstance(t, pd.Series) and isinstance(y, pd.Series) and not single_df:
return w, t, y
if isinstance(w, (list, tuple)):
if any(isinstance(w_i, list, tuple) for w_i in w):
d = {get_wlabel(i + 1): w_i for i, w_i in enumerate(w)}
elif any(isinstance(w_i, np.ndarray) for w_i in w):
assert all(w_i.ndim == 1 or w_i.shape[1] == 1 for w_i in w)
d = {get_wlabel(i + 1): w_i for i, w_i in enumerate(w)}
else:
d = {W: w}
elif isinstance(w, np.ndarray):
if w.ndim == 1:
d = {W: w}
elif w.ndim == 2:
# Assumes the examples are in the rows and covariates in the columns
d = {get_wlabel(i + 1): w_i for i, w_i in enumerate(w.T)}
else:
raise ValueError('Unexpected w.ndim: {}'.format(w.ndim))
elif isinstance(w, pd.DataFrame):
d = w.to_dict()
else:
warnings.warn(' unexpected w type: {}'.format(type(w)), Warning)
if single_df:
d[T] = t
d[Y] = y
return pd.DataFrame(d)
else:
return pd.DataFrame(d), pd.Series(t.squeeze(), name=T), pd.Series(y.squeeze(), name=Y)
def to_tensor(x):
if isinstance(x, (pd.DataFrame, pd.Series)):
x = x.values
return torch.tensor(x, dtype=torch.float)
def to_torch_variable(x):
return Variable(to_tensor(x))
def to_tensors(*args):
if len(args) == 1:
if isinstance(args[0], (tuple, list)):
args = args[0]
else:
return to_tensor(args[0])
return tuple(to_tensor(arg) for arg in args)
def to_np_arrays(*args):
if len(args) == 1:
if isinstance(args[0], (tuple, list)):
args = args[0]
else:
return np.array(args[0], dtype=np.float)
return np.array(args[0], dtype=np.float)
return tuple(np.array(arg, dtype=np.float) for arg in args)
def to_np_vector(x, by_column=False, thin_interval=None, column_vector=False):
if not isinstance(x, (torch.Tensor, np.ndarray)):
raise ValueError('Invalid input type: {}'.format(type(x)))
if isinstance(x, torch.Tensor):
x = x.detach().numpy()
if by_column:
order = 'F'
else:
order = 'C' # by row
if column_vector:
np_vect = x.reshape(-1, 1, order=order)
else:
np_vect = x.reshape(-1, order=order)
if thin_interval is not None:
return np_vect[::thin_interval]
else:
return np_vect
def to_np_vectors(tensors, by_column=False, thin_interval=None, column_vector=False):
if not isinstance(tensors, (list, tuple)):
tensors = (tensors,)
np_vects = tuple(to_np_vector(x, by_column=by_column, thin_interval=thin_interval, column_vector=column_vector)
for x in tensors)
if len(np_vects) == 1:
return np_vects[0]
else:
return np_vects
def get_num_positional_args(f):
if isinstance(f, FunctionType):
n_args = f.__code__.co_argcount
elif isinstance(f, MethodType):
# Get corresponding function of class method and remove 'self' argument
f = f.__func__
n_args = f.__code__.co_argcount - 1
else:
raise ValueError('Invalid argument type: {}'.format(type(f)))
if f.__defaults__ is not None: # in case there are no kwargs
n_kwargs = len(f.__defaults__)
else:
n_kwargs = 0
n_positional_args = n_args - n_kwargs
return n_positional_args
def get_wlabel(i=None, wlabel=W):
return wlabel if i is None else wlabel + str(i)
def permutation_test(x, y, func='x_mean != y_mean', method='approximate',
num_rounds=1000, seed=None):
"""
Nonparametric permutation test
Adapted from http://rasbt.github.io/mlxtend/user_guide/evaluate/permutation_test/
Parameters
-------------
x : 2D numpy array of the first sample
(e.g., the treatment group).
y : 2D numpy array of the second sample
(e.g., the control group).
func : custom function or str (default: 'x_mean != y_mean')
function to compute the statistic for the permutation test.
- If 'x_mean != y_mean', uses
`func=lambda x, y: np.abs(np.mean(x) - np.mean(y)))`
for a two-sided test.
- If 'x_mean > y_mean', uses
`func=lambda x, y: np.mean(x) - np.mean(y))`
for a one-sided test.
- If 'x_mean < y_mean', uses
`func=lambda x, y: np.mean(y) - np.mean(x))`
for a one-sided test.
method : 'approximate' or 'exact' (default: 'approximate')
If 'exact' (default), all possible permutations are considered.
If 'approximate' the number of drawn samples is
given by `num_rounds`.
Note that 'exact' is typically not feasible unless the dataset
size is relatively small.
num_rounds : int (default: 1000)
The number of permutation samples if `method='approximate'`.
seed : int or None (default: None)
The random seed for generating permutation samples if
`method='approximate'`.
Returns
----------
p-value under the null hypothesis
"""
if method not in ('approximate', 'exact'):
raise AttributeError('method must be "approximate"'
' or "exact", got %s' % method)
if isinstance(func, str):
if func not in (
'x_mean != y_mean', 'x_mean > y_mean', 'x_mean < y_mean'):
raise AttributeError('Provide a custom function'
' lambda x,y: ... or a string'
' in ("x_mean != y_mean", '
'"x_mean > y_mean", "x_mean < y_mean")')
elif func == 'x_mean != y_mean':
def func(x, y):
return np.abs(np.mean(x) - np.mean(y))
elif func == 'x_mean > y_mean':
def func(x, y):
return np.mean(x) - np.mean(y)
else:
def func(x, y):
return np.mean(y) - np.mean(x)
rng = np.random.RandomState(seed)
m, n = len(x), len(y)
combined = np.vstack((x, y))
more_extreme = 0.
reference_stat = func(x, y)
# Note that whether we compute the combinations or permutations
# does not affect the results, since the number of permutations
# n_A specific objects in A and n_B specific objects in B is the
# same for all combinations in x_1, ... x_{n_A} and
# x_{n_{A+1}}, ... x_{n_A + n_B}
# In other words, for any given number of combinations, we get
# n_A! x n_B! times as many permutations; hoewever, the computed
# value of those permutations that are merely re-arranged combinations
# does not change. Hence, the result, since we divide by the number of
# combinations or permutations is the same, the permutations simply have
# "n_A! x n_B!" as a scaling factor in the numerator and denominator
# and using combinations instead of permutations simply saves computational
# time
if method == 'exact':
for indices_x in combinations(range(m + n), m):
indices_y = [i for i in range(m + n) if i not in indices_x]
diff = func(combined[list(indices_x)], combined[indices_y])
if diff > reference_stat:
more_extreme += 1.
num_rounds = factorial(m + n) / (factorial(m) * factorial(n))
else:
for i in range(num_rounds):
rng.shuffle(combined)
if func(combined[:m], combined[m:]) > reference_stat:
more_extreme += 1.
return more_extreme / num_rounds
def class_name(obj):
return type(obj).__name__
def download_dataset(url, dataset_name, dataroot=None, filename=None):
if dataroot is None:
dataroot = DATA_FOLDER
if filename is None:
filename = os.path.basename(urlparse(url).path)
file_path = os.path.join(dataroot, filename)
if os.path.isfile(file_path):
print('{} dataset already exists at {}'.format(dataset_name, file_path))
else:
print('Downloading {} dataset to {} ...'.format(dataset_name, file_path), end=' ')
download_file(url, file_path)
print('DONE')
return file_path
def download_file(url, file_path):
# open in binary mode
with open(file_path, "wb") as f:
# get request
response = requests.get(url)
# write to file
f.write(response.content)
def unzip(path_to_zip_file, unzip_dir=None):
unzip_path = os.path.splitext(path_to_zip_file)[0]
if os.path.isfile(unzip_path):
print('File already unzipped at', unzip_path)
return unzip_path
print('Unzipping {} to {} ...'.format(path_to_zip_file, unzip_path), end=' ')
if unzip_dir is None:
unzip_dir = os.path.dirname(path_to_zip_file)
with zipfile.ZipFile(path_to_zip_file, 'r') as zip_ref:
zip_ref.extractall(unzip_dir)
print('DONE')
return unzip_path
def regular_round(x):
return int(Decimal(x).to_integral_value(rounding=ROUND_HALF_UP))
def get_duplicates(x, thresh=2):
u, c = np.unique(x, return_counts=True)
dup = u[c >= thresh]
dup_counts = c[c >= thresh]
return dup, dup_counts