forked from graalvm/mx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmx_benchplot.py
415 lines (376 loc) · 17.8 KB
/
mx_benchplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#
# ----------------------------------------------------------------------------------------------------
#
# Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 2 only, as
# published by the Free Software Foundation.
#
# This code is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# version 2 for more details (a copy is included in the LICENSE file that
# accompanied this code).
#
# You should have received a copy of the GNU General Public License version
# 2 along with this work; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
# or visit www.oracle.com if you need additional information or have any
# questions.
#
# ----------------------------------------------------------------------------------------------------
from __future__ import print_function
import json
from argparse import ArgumentParser, REMAINDER
from argparse import RawTextHelpFormatter
import os.path
import sys
import mx
def suite_context_free(func):
"""
Decorator for commands that don't need a primary suite.
"""
mx._suite_context_free.append(func.__name__)
return func
def unique_prefix(s, choices):
r = [x for x in choices if x.startswith(s)]
return r[0] if len(r) == 1 else s
@suite_context_free
def benchtable(args):
parser = ArgumentParser(
prog="mx benchtable",
description=
"""
Generate a table of benchmark results for a set of JSON benchmark
result files. By default this emits a text formatted table with a
colum for each result and a column reporting the percentage change
relative to the first set of results. All files must come from the same
benchmark suite.
""",
formatter_class=RawTextHelpFormatter)
parser.add_argument('-b', '--benchmarks', help="""Restrict output to comma separated list of benchmarks.
This also controls the output order of the results.""", type=lambda s: s.split(','))
parser.add_argument('--format', action='store', choices=['text', 'csv', 'jira', 'markdown'], default='text', help='Set the output format. (Default: text)')
diff_choices = ['percent', 'absolute', 'none']
parser.add_argument('--diff', default='percent', choices=diff_choices, type=lambda s: unique_prefix(s, diff_choices),
help='Add a column reporting the difference relative the first score. (Default: percent)')
parser.add_argument('-f', '--file', default=None, help='Generate the table into a file.')
parser.add_argument('-S', '--samples', help="""\
Controls sampling of the data for the graphs. A positive number selects
the last n data points and a negative number selects the first n data points.
By default only report the last data point""", type=int, default=None)
parser.add_argument('--variance', action='store_true', help='Report the percentage variance of the scores.')
parser.add_argument('-n', '--names', help='A list of comma separate names for each file. \n' +
'It must have the same number of entries as the files.', type=lambda s: s.split(','))
parser.add_argument('files', help='List of files', nargs=REMAINDER)
args = parser.parse_args(args)
if args.diff == 'none':
args.diff = None
benchmarks, results, names = extract_results(args.files, args.names, args.samples, args.benchmarks)
score_key = 'score'
variance_key = 'variance'
if args.samples:
score_key = 'trimmed_score'
variance_key = 'trimmed_variance'
handle = open(args.file, 'w') if args.file else sys.stdout
# build a collection of rows and compute padding required to align them
table = []
widths = []
specifiers = []
headers = []
for benchmark in benchmarks:
first_score = None
row = [benchmark]
specifiers = ['s']
headers = ['Benchmark']
first = True
for resultname, result in zip(names, results):
score = None
variance = None
scale = None
if result.get(benchmark):
score = result[benchmark][score_key]
variance = result[benchmark][variance_key]
if not result[benchmark]['higher']:
scale = -1
else:
scale = 1
if score:
if first:
first_score = score
row.append('%.2f' % score)
specifiers.append('s')
else:
row.append('N/A')
specifiers.append('s')
headers.append(resultname)
if args.variance:
if score:
row.append('%.2f%%' % variance)
else:
row.append('')
specifiers.append('s')
headers.append('Variance')
if not first and args.diff:
if score and first_score:
# if the first score is missing then don't report any change
if args.diff == 'percent':
row.append('%.2f%%' % ((score - first_score) * 100.0 * scale / first_score))
else:
row.append('%.2f' % ((score - first_score) * scale))
else:
row.append('')
specifiers.append('s')
if args.diff == 'percent':
headers.append('Change')
else:
headers.append('Delta')
first = False
table.append(row)
w = [max(len(h), len(('%' + spec) % (x))) for spec, x, h in zip(specifiers, row, headers)]
if len(widths) == 0:
widths = w
else:
widths = list(map(max, widths, w))
if args.format == 'text':
handle.write(' '.join(['%' + str(w) + 's' for w in widths]) % tuple(headers) + '\n')
format_string = ' '.join(['%' + str(w) + s for s, w in zip(specifiers, widths)])
for row in table:
handle.write(format_string % tuple(row) + '\n')
else:
header_sep = None
row_sep = None
header_terminator = ''
row_terminator = ''
header_separator = None
if args.format == 'jira':
header_sep = '||'
header_terminator = '||'
row_sep = '|'
row_terminator = '|'
elif args.format == 'csv':
header_sep = ','
row_sep = ','
elif args.format == 'markdown':
header_sep = '|'
row_sep = '|'
header_terminator = '|'
row_terminator = '|'
# Bitbucket server doesn't respect the alignment colons and
# not all markdown processors support tables.
header_separator = '---:'
else:
mx.abort('Unhandled format: ' + args.format)
handle.write(header_terminator + header_sep.join(headers) + header_terminator + '\n')
if header_separator:
handle.write(header_terminator + header_sep.join([header_separator for h in headers]) + header_terminator + '\n')
formats = ['%' + str(w) + s for s, w in zip(specifiers, widths)]
for row in table:
handle.write(row_terminator + row_sep.join([(f % r).strip() for r, f in zip(row, formats)]) + row_terminator + '\n')
if handle is not sys.stdout:
handle.close()
@suite_context_free
def benchplot(args):
parser = ArgumentParser(
prog="mx benchplot",
description="""
Generate a plot of benchmark results for a set of JSON benchmark
result files using the Python package matplotlib. By default this
produces a bar chart comparing the final score in each result file.
The --warmup option can be used to graph the individual scores in
sequence. All files must come from the same benchmark suite.
""",
formatter_class=RawTextHelpFormatter)
parser.add_argument('-w', '--warmup', action='store_true', help='Plot a warmup graph')
parser.add_argument('-b', '--benchmarks', help="""Restrict output to comma separated list of benchmarks.
This also controls the output order of the results.""", type=lambda s: s.split(','))
parser.add_argument('-f', '--file', default=None,
help="""\
Generate the graph into a file. The extension will determine the format,
which must be .png, .svg or .pdf.""")
parser.add_argument('-S', '--samples', help="""\
Controls sampling of the data for the graphs. A positive number selects
the last n data points and a negative number selects the first n data points.
A warmup graph reports all data points by default and the bar chart reports
on the last point""", type=int, default=None)
parser.add_argument('-n', '--names', help="""Provide a list of names for the plot files.
Otherwise the names are derived from the filenames.""", type=lambda s: s.split(','))
parser.add_argument('-c', '--colors', help='Provide alternate colors for the results', type=lambda s: s.split(','))
parser.add_argument('-C', '--columns', help='The number of columns in a warmup graph. Defaults to 2.', type=int, default=None)
parser.add_argument('-L', '--legend-location', help='Location for the legend.', default='upper-right',
choices=['upper-right', 'upper-left', 'lower-right', 'lower-left'])
parser.add_argument('-P', '--page-size', help='The width and height of the page. Default to 11,8.5.', type=lambda s: [float(x) for x in s.split(',')], default=[11, 8.5])
parser.add_argument('files', help='List of JSON benchmark result files', nargs=REMAINDER)
args = parser.parse_args(args)
args.legend_location = args.legend_location.replace('-', ' ')
if not args.warmup:
if args.columns:
mx.abort('Option -C/--columns is only applicable to warmup graphs')
last_n = None
if not args.warmup:
if not args.samples:
# only report the final score in bar graph.
last_n = 1
else:
last_n = args.samples
try:
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
color_cycle = plt.rcParams['axes.prop_cycle'].by_key()['color']
benchmarks, results, names = extract_results(args.files, args.names, last_n, args.benchmarks)
score_key = 'score'
scores_key = 'scores'
if last_n:
score_key = 'trimmed_score'
scores_key = 'trimmed_scores'
if not args.colors:
args.colors = color_cycle[0:len(names)]
if not args.columns:
args.columns = 2
if args.warmup:
index = 1
rows = 1
cols = 1
if len(benchmarks) > 1:
cols = args.columns
rows = (len(benchmarks) + cols - 1) / cols
plt.figure(figsize=args.page_size, dpi=100)
for b in benchmarks:
ax = plt.subplot(rows, cols, index)
plt.title(b)
for resultname, result, color in zip(names, results, args.colors):
scores = []
xs = []
# missing results won't be plotted
if result.get(b):
scores = result[b][scores_key]
xs = range(1, len(scores) + 1)
if args.samples:
if args.samples > 0:
scores = scores[:args.samples]
xs = xs[:args.samples]
else:
scores = scores[args.samples:]
xs = xs[args.samples:]
plt.plot(xs, scores, label=resultname, color=color)
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels, loc=args.legend_location, fontsize='small', ncol=2)
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.set_ylim(ymin=0)
index = index + 1
else:
_, ax = plt.subplots(figsize=args.page_size, dpi=100)
x = 0
bar_width = 0.25
spacing = 0.5
column_width = bar_width * len(names) + spacing
column_center = bar_width * ((len(names) - 1) / 2)
group = 0
rects = []
xticks = []
for name, color in zip(names, args.colors):
scores = []
xs = []
column = 0
xticks = []
for benchmark in benchmarks:
for resultname, result in zip(names, results):
if name == resultname:
if result.get(benchmark):
scores.append(result[benchmark][score_key])
xs.append(x + column * column_width + group * bar_width)
xticks.append(column * column_width + column_center)
column = column + 1
rects.append(ax.bar(xs, scores, width=bar_width, color=color))
group = group + 1
ax.legend(rects, names)
ax.set_xticks(xticks)
ax.set_xticklabels(benchmarks)
plt.tight_layout()
if args.file:
plt.savefig(args.file)
else:
plt.show()
except ImportError as e:
print(e)
mx.abort('matplotlib must be available to use benchplot. Install it using pip')
def extract_results(files, names, last_n=None, selected_benchmarks=None):
if names:
if len(names) != len(files):
mx.abort('Wrong number of names specified: {} files but {} names.'.format(len(files), len(names)))
else:
names = [os.path.splitext(os.path.basename(x))[0] for x in files]
if len(names) != len(set(names)):
mx.abort('Base file names are not unique. Specify names using --names')
results = []
benchmarks = []
bench_suite = None
for filename, name in zip(files, names):
result = {}
results.append(result)
with open(filename) as fp:
data = json.load(fp)
if not isinstance(data, dict) or not data.get('queries'):
mx.abort('{} doesn\'t appear to be a benchmark results file'.format(filename))
for entry in data['queries']:
benchmark = entry['benchmark']
if benchmark not in benchmarks:
benchmarks.append(benchmark)
if bench_suite is None:
bench_suite = entry['bench-suite']
else:
if bench_suite != entry['bench-suite']:
mx.abort("File '{}' contains bench-suite '{}' but expected '{}'.".format(filename, entry['bench-suite'], bench_suite))
score = entry['metric.value']
iteration = entry['metric.iteration']
scores = result.get(benchmark)
if not scores:
higher = entry['metric.better'] == 'higher'
result[benchmark] = {'scores': [], 'higher': higher, 'name': name}
scores = result.get(benchmark)
if entry['metric.name'] == 'warmup':
score_list = scores['scores']
while len(score_list) < iteration + 1:
score_list.append(None)
score_list[iteration] = score
elif entry['metric.name'] == 'final-time':
# ignore this value
pass
elif entry['metric.name'] == 'time' or entry['metric.name'] == 'throughput':
scores['last-score'] = score
for _, entry in result.items():
scores = entry['scores']
if entry.get('last-score'):
scores.append(entry['last-score'])
entry['scores'] = scores
if last_n and len(entry['scores']) >= abs(last_n):
if last_n < 0:
entry['trimmed_scores'] = entry['scores'][:-last_n]
else:
entry['trimmed_scores'] = entry['scores'][-last_n:]
entry['trimmed_count'] = len(entry['trimmed_scores'])
entry['trimmed_score'] = sum(entry['trimmed_scores']) / len(entry['trimmed_scores'])
entry['count'] = len(entry['scores'])
entry['score'] = sum(entry['scores']) / len(entry['scores'])
# Compute a variance value. This is a percentage variance relative to the average score
# which is easier to interpret than a raw number.
for _, entry in result.items():
variance = 0
for score in entry['scores']:
variance = variance + (score - entry['score']) * (score - entry['score'])
entry['variance'] = ((variance / entry['count']) / entry['score'])
if entry.get('trimmed_scores'):
variance = 0
for score in entry['trimmed_scores']:
variance = variance + (score - entry['trimmed_score']) * (score - entry['trimmed_score'])
entry['trimmed_variance'] = ((variance / entry['trimmed_count']) / entry['trimmed_score'])
if selected_benchmarks:
unknown_benchmarks = set(selected_benchmarks) - set(benchmarks)
if len(unknown_benchmarks) != 0:
mx.abort('Unknown benchmarks selected: {}\nAvailable benchmarks are: {}'.format(','.join(unknown_benchmarks), ','.join(benchmarks)))
benchmarks = selected_benchmarks
return benchmarks, results, names