Releases: zama-ai/concrete-ml
v1.4.0-rc2
Summary
1.4.0 - Release Candidate - 2
Links
Docker Image: zamafhe/concrete-ml:v1.4.0-rc2
Docker Hub: https://hub.docker.com/r/zamafhe/concrete-ml/tags
pip: https://pypi.org/project/concrete-ml/1.4.0-rc2
Documentation: https://docs.zama.ai/concrete-ml
v1.4.0-rc2
Feature
- SGDClassifier training in FHE (
0893718
) - Support Expand Equal ONNX op (
cf3ce49
) - Add rounding feature on cml trees (
064eb82
) - Add multi-output support (
fef23a9
) - Allow QuantizedAdd produces_output_graph (
0b57c71
) - Encrypted gemm support - 3d inputs - better rounding control - sgd training test (
111c7e3
)
Fix
- Add --no-warnings flag to linkchecker (
1dc547e
) - Fix wrong assumption in ReduceSum operator's axis parameter (
1a592d7
) - Mark flaky tests due to issue in simulation (
4f67883
) - Update learning rate default value for XGB models (
e4984d6
)
Documentation
v1.4.0-rc1
Summary
1.4.0 - Release Candidate - 1
Links
Docker Image: zamafhe/concrete-ml:v1.4.0-rc1
Docker Hub: https://hub.docker.com/r/zamafhe/concrete-ml/tags
pip: https://pypi.org/project/concrete-ml/1.4.0-rc1
Documentation: https://docs.zama.ai/concrete-ml
v1.4.0-rc1
Feature
- Support Expand Equal ONNX op (
cf3ce49
) - Add rounding feature on cml trees (
064eb82
) - Add multi-output support (
fef23a9
) - Allow QuantizedAdd produces_output_graph (
0b57c71
) - Encrypted gemm support - 3d inputs - better rounding control - sgd training test (
111c7e3
)
Fix
- Add --no-warnings flag to linkchecker (
1dc547e
) - Fix wrong assumption in ReduceSum operator's axis parameter (
1a592d7
) - Mark flaky tests due to issue in simulation (
4f67883
) - Update learning rate default value for XGB models (
e4984d6
)
Documentation
v1.3.0
Summary
Adds SGDRegressor built-in model and some bugfixes.
Links
Docker Image: zamafhe/concrete-ml:v1.3.0
Docker Hub: https://hub.docker.com/r/zamafhe/concrete-ml/tags
pip: https://pypi.org/project/concrete-ml/1.3.0
Documentation: https://docs.zama.ai/concrete-ml
v1.3.0
Feature
- Add SGD regressor (
abb143c
)
Fix
- Fix shape output mismatch for KNNClassifier (
6de7c6e
)
v1.2.1
Summary
Bug fix for XGBoostRegressor.
Links
Docker Image: zamafhe/concrete-ml:v1.2.1
pip: https://pypi.org/project/concrete-ml/1.2.1
Documentation: https://docs.zama.ai/concrete-ml
v1.2.1
v1.2.0
Summary
This new version of Concrete ML adds support for hybrid deployment and K-nearest neighbor classification. Hybrid deployment with FHE is an approach that improves on-premise deployment by converting parts of the model to remote FHE computation, in order to protect model intellectual property (IP), ensure license compliance and facilitate usage monitoring. The 1.2 version also adds an improvement to the built-in neural networks, making them 10x faster out-of-the-box.
Links
Docker Image: zamafhe/concrete-ml:v1.2.0
pip: https://pypi.org/project/concrete-ml/1.2.0
Documentation: https://docs.zama.ai/concrete-ml
v1.2.0
Feature
- Enable import of fitted linear sklearn models (
771c7ff
) - Support QAT models in hybrid model (
526b000
) - Expose statuses to compile torch (
8abddf6
) - Add KNN classifier in CML (
1c33ec8
) - Add power of two scaling adapter for roundPBS (
546fac9
) - Add hybrid FHE models (
be6aa6e
)
Fix
- Fix confusing print in CNN tutorial of advanced-examples (
9136c47
) - Fix path parsing and default in hybrid serving (
afd049a
) - Fix flaky padding test (
6aaf5f0
) - Fix issues with OMP library (
2b61846
) - Make sure structured pruning and unstructured pruning work well together (
ada18ab
) - Fix structured pruning crash not caught by test (
cafd8d1
) - Fix bad top1 accuracy in cifar_brevitas_training use case (
f0a984e
) - Fix flaky double_fit test (
3da6408
) - Remove workaround for simulating linear models (
3f622bc
) - Re-compute quantization params when re-fitting linear models (
3bad62e
)
Documentation
- Fix and improve credit scoring use case example (
e4db376
) - Update contribution part (
f2822d1
) - Document KNN, PoT, Hybrid models (
68a0b4c
) - Update mnist CNN (
f80c90b
) - Update mnist Fully Connected example with PoT + rounding (
6e3d003
) - Update cifar_brevitas_training accuracy using representative calibration set (
39480ef
) - Correct n_bits markdown value in the LLM use case notebook (
0cf1174
)
v1.2.0-rc0
Summary
Trying out the new release process.
Links
Docker Image: zamafhe/concrete-ml:v1.2.0-rc0
pip: https://pypi.org/project/concrete-ml/1.2.0-rc0
Documentation: https://docs.zama.ai/concrete-ml
v1.2.0-rc0
Feature
- Add hybrid FHE models (
be6aa6e
)
Fix
- Flaky test double_fit (
3da6408
) - Re-compute quantization parameters when re-fitting linear models (
3bad62e
)
Documentation
v1.1.0
Summary
Concrete-ML 1.1.0 adds optimization tools that speed-up the FHE inference time of neural-network models, up to a factor of 20x. Furthermore, this version also improves the support for built-in neural-networks and classical models.
Links
Docker Image: zamafhe/concrete-ml:v1.1.0
pip: https://pypi.org/project/concrete-ml/1.1.0
Documentation: https://docs.zama.ai/concrete-ml
v1.1.0
v1.0.3
Summary
Expose training parameters from scikit-learn in built-in models and add new advanced examples.
Links
Docker Image: zamafhe/concrete-ml:v1.0.3
pip: https://pypi.org/project/concrete-ml/1.0.3
Documentation: https://docs.zama.ai/concrete-ml
v1.0.3
Feature
- Support multi-input QM with inputs of different shapes (
6e1315f
) - Add a function to build a quantized module from a model (
34e5f68
) - Expose scikit-learn training attributes in built-in models (
37ab8c0
) - Add serialization to QNN models (
33312a8
)
Documentation
v1.0.2
Summary
Fix for the Gather operator to handle fancy indexing.
Links
Docker Image: zamafhe/concrete-ml:v1.0.2
pip: https://pypi.org/project/concrete-ml/1.0.2
Documentation: https://docs.zama.ai/concrete-ml
v1.0.2
v1.0.1
Summary
Fixing minor things, like few typos or rewording the documentation.
Links
Docker Image: zamafhe/concrete-ml:v1.0.1
pip: https://pypi.org/project/concrete-ml/1.0.1
Documentation: https://docs.zama.ai/concrete-ml