forked from UofUMetabolomicsCore/QSRR_Automator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_model.py
156 lines (124 loc) · 7.25 KB
/
graph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
Copyright (c) 2020 Bradley Naylor, James Cox and University of Utah
All rights reserved.
Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
* Redistributions of source code must retain the
above copyright notice, this list of conditions
and the following disclaimer.
* Redistributions in binary form must reproduce
the above copyright notice, this list of conditions
and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors
may be used to endorse or promote products derived
from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
#need to test the display without waiting for Random Forest or SVR to complete
import os, sys
#import numpy as np
#import pandas as pd
from PyQt5 import QtCore, QtWidgets, uic
import matplotlib.pyplot as plt
from matplotlib.backends.backend_qt5agg import FigureCanvas
import settings_from_model_graph as sfmg
#from matplotlib.backends.backend_qt4agg import FigrueCanvasQTAgg as FigureCanvas
temp_loc = os.path.dirname(os.path.abspath(__file__))
#temp_loc = os.path.dirname(os.path.abspath(sys.executable))
graph_filename = "Successful_Graph.pdf"
form_class = uic.loadUiType(os.path.join(temp_loc,"Model_Training_Viewer.ui"))[0]
class display_training_results(QtWidgets.QDialog, form_class):
def __init__(self, final_model = None, location = None, settings = None, settings_from_last_run = None, original_settings = None, number_of_features = None):
QtWidgets.QMainWindow.__init__(self)
self.setWindowTitle("Model Examination")
self.setupUi(self)
self.location = os.path.join(location, graph_filename)
#need to set up the settings adjustment settings
self.settings = settings
self.last_save_settings = settings_from_last_run
self.original_settings = original_settings
self.number_of_features= number_of_features
self.actual_times = final_model.y_values
self.predicted_times = final_model.predicted_y
self.value_mean_cross_val_r2 = final_model.r2_mean
self.value_median_cross_val_r2 = final_model.r2_median
self.mean_time_error_time_units = final_model.mae_mean
self.std_dev_time_error_time_units = final_model.mae_std
self.final_model_mean_r2_score = final_model.final_r2_score
self.final_model_mean_mae_score = final_model.final_mae
self.max = 0
self.min =10
for temp_list in [self.actual_times, self.predicted_times]:
if self.max < max(temp_list): self.max = int(max(temp_list) + .5)
if self.min > min(temp_list):self.min = int(min(temp_list))
self.ideal_fit = lambda x: x
self.return_value = "Not Selected"
self.adjust_settings_button.clicked.connect(self.change_settings_for_next_model)
self.redo_button.clicked.connect(self.bad_model)
self.accept_button.clicked.connect(self.good_model)
self.graph()
def graph(self):
self.figure = plt.figure()
self.ax = self.figure.add_subplot(111) #standard matplotlib, linked to the canvas object
self.ax.plot(self.actual_times, self.predicted_times, 'b*', markersize = 10, label = "Final Model Data")
self.ax.plot([self.min, self.max], [self.min, self.max], 'k-', label = "Unity Line (Ideal)")
plt.title("How good does the Model do?", fontsize = 18)
plt.xlabel("Actual RT", fontsize = 16)
plt.ylabel("Predicted RT", fontsize = 16)
self.ax.tick_params(axis = 'both', which = 'major', labelsize = 16)
self.ax.legend(bbox_to_anchor = (.15, 1.1))
#based on https://stackoverflow.com/questions/53157230/embed-a-matplotlib-plot-in-a-pyqt5-gui first answer accessed 1/25/19
self.plotWidget = FigureCanvas(self.figure)
layout = QtWidgets.QVBoxLayout(self.graph_view)
layout.addWidget(self.plotWidget)
#we need to limit the decimal points since there is no need for tons of them and they clutter the display quite a bit.
self.mean_cv_r2.setText("Mean Training R2 = {:.3f}".format(self.value_mean_cross_val_r2))
self.median_cv_r2.setText("Median Training R2 = {:.3f}".format(self.value_median_cross_val_r2))
self.mean_cv_absolute.setText("Expected Absolute Error of Predictions = {:.3f}".format(self.mean_time_error_time_units))
self.std_dev_mae_cv.setText("Std Dev of Expected Absolute Error = {:3f}".format(self.std_dev_time_error_time_units))
self.final_r2_score.setText("Final Model R2 Score = {:.3f}".format(self.final_model_mean_r2_score))
self.final_absolute_error.setText("Final Model Mean Absolute Error = {:.3f}".format(self.final_model_mean_mae_score))
#add values from the machine learning analysis (will need to check if there are the same
def bad_model(self):
self.return_value = "Redo Calculation"
self.close()
def good_model(self):
self.return_value = "Accept Model"
try:
self.ax.figure.savefig(self.location,bbox_inches = 'tight')
except PermissionError:
QtWidgets.QMessageBox.information(self, "Error", "{} is already open. close to accept and save the graph".format(self.location))
return
self.close()
def change_settings_for_next_model(self):
self.set_menu = sfmg.Settings_Menu(self, self.settings, self.last_save_settings, self.original_settings, self.number_of_features)
self.set_menu.show()
def closeEvent(self, event):
if self.return_value != "Not Selected":
event.accept()
else:
are_you_sure = QtWidgets.QMessageBox.question(self, "Exit", "You will be returned to the main menu with no model saved and no further calculations. Are you sure?", QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No)
if are_you_sure == QtWidgets.QMessageBox.Yes:
event.accept()
else:
event.ignore() #functioning
if __name__ == '__main__':
app = QtWidgets.QApplication(sys.argv)
interaction_gui = display_training_results()
interaction_gui.show()
sys.exit(app.exec_())