forked from TheNewNormal/libxhyve
-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
vhpet.c
752 lines (643 loc) · 19.3 KB
/
vhpet.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/*-
* Copyright (c) 2013 Tycho Nightingale <tycho.nightingale@pluribusnetworks.com>
* Copyright (c) 2013 Neel Natu <neel@freebsd.org>
* Copyright (c) 2015 xhyve developers
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <stdint.h>
#include <stdbool.h>
#include <pthread.h>
#include <assert.h>
#include <xhyve/support/misc.h>
#include <xhyve/support/acpi_hpet.h>
#include <xhyve/vmm/vmm.h>
#include <xhyve/vmm/vmm_lapic.h>
#include <xhyve/vmm/vmm_callout.h>
#include <xhyve/vmm/vmm_ktr.h>
#include <xhyve/vmm/io/vhpet.h>
#include <xhyve/vmm/io/vioapic.h>
#define HPET_FREQ 10000000 /* 10.0 Mhz */
#define FS_PER_S 1000000000000000ul
/* Timer N Configuration and Capabilities Register */
#define HPET_TCAP_RO_MASK (HPET_TCAP_INT_ROUTE | \
HPET_TCAP_FSB_INT_DEL | \
HPET_TCAP_SIZE | \
HPET_TCAP_PER_INT)
/*
* HPET requires at least 3 timers and up to 32 timers per block.
*/
#define VHPET_NUM_TIMERS 8
CTASSERT(VHPET_NUM_TIMERS >= 3 && VHPET_NUM_TIMERS <= 32);
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpadded"
struct vhpet_callout_arg {
struct vhpet *vhpet;
int timer_num;
};
struct vhpet {
struct vm *vm;
pthread_mutex_t mtx;
sbintime_t freq_sbt;
uint64_t config; /* Configuration */
uint64_t isr; /* Interrupt Status */
uint32_t countbase; /* HPET counter base value */
sbintime_t countbase_sbt; /* uptime corresponding to base value */
struct {
uint64_t cap_config; /* Configuration */
uint64_t msireg; /* FSB interrupt routing */
uint32_t compval; /* Comparator */
uint32_t comprate;
struct callout callout;
sbintime_t callout_sbt; /* time when counter==compval */
struct vhpet_callout_arg arg;
} timer[VHPET_NUM_TIMERS];
};
#pragma clang diagnostic pop
#define VHPET_LOCK(vhp) pthread_mutex_lock(&((vhp)->mtx))
#define VHPET_UNLOCK(vhp) pthread_mutex_unlock(&((vhp)->mtx))
static void vhpet_start_timer(struct vhpet *vhpet, int n, uint32_t counter,
sbintime_t now);
static uint64_t
vhpet_capabilities(void)
{
uint64_t cap = 0;
cap |= ((uint64_t) 0x8086) << 16; /* vendor id */
cap |= ((uint64_t) (VHPET_NUM_TIMERS - 1)) << 8; /* number of timers */
cap |= (uint64_t) 1; /* revision */
cap &= ~((uint64_t) HPET_CAP_COUNT_SIZE); /* 32-bit timer */
cap &= (uint64_t) 0xffffffff;
cap |= ((uint64_t) (FS_PER_S / HPET_FREQ)) << 32; /* tick period in fs */
return (cap);
}
static __inline bool
vhpet_counter_enabled(struct vhpet *vhpet)
{
return ((vhpet->config & HPET_CNF_ENABLE) ? true : false);
}
static __inline bool
vhpet_timer_msi_enabled(struct vhpet *vhpet, int n)
{
const uint64_t msi_enable = HPET_TCAP_FSB_INT_DEL | HPET_TCNF_FSB_EN;
if ((vhpet->timer[n].cap_config & msi_enable) == msi_enable)
return (true);
else
return (false);
}
static __inline int
vhpet_timer_ioapic_pin(struct vhpet *vhpet, int n)
{
/*
* If the timer is configured to use MSI then treat it as if the
* timer is not connected to the ioapic.
*/
if (vhpet_timer_msi_enabled(vhpet, n))
return (0);
return ((vhpet->timer[n].cap_config & HPET_TCNF_INT_ROUTE) >> 9);
}
static uint32_t
vhpet_counter(struct vhpet *vhpet, sbintime_t *nowptr)
{
uint32_t val;
sbintime_t now, delta;
val = vhpet->countbase;
if (vhpet_counter_enabled(vhpet)) {
now = sbinuptime();
delta = now - vhpet->countbase_sbt;
KASSERT(delta >= 0, ("vhpet_counter: uptime went backwards: "
"%#llx to %#llx", vhpet->countbase_sbt, now));
val += delta / vhpet->freq_sbt;
if (nowptr != NULL)
*nowptr = now;
} else {
/*
* The sbinuptime corresponding to the 'countbase' is
* meaningless when the counter is disabled. Make sure
* that the the caller doesn't want to use it.
*/
KASSERT(nowptr == NULL, ("vhpet_counter: nowptr must be NULL"));
}
return (val);
}
static void
vhpet_timer_clear_isr(struct vhpet *vhpet, int n)
{
int pin;
if (vhpet->isr & (1 << n)) {
pin = vhpet_timer_ioapic_pin(vhpet, n);
KASSERT(pin != 0, ("vhpet timer %d irq incorrectly routed", n));
vioapic_deassert_irq(vhpet->vm, pin);
vhpet->isr &= ~(1 << n);
}
}
static __inline bool
vhpet_periodic_timer(struct vhpet *vhpet, int n)
{
return ((vhpet->timer[n].cap_config & HPET_TCNF_TYPE) != 0);
}
static __inline bool
vhpet_timer_interrupt_enabled(struct vhpet *vhpet, int n)
{
return ((vhpet->timer[n].cap_config & HPET_TCNF_INT_ENB) != 0);
}
static __inline bool
vhpet_timer_edge_trig(struct vhpet *vhpet, int n)
{
KASSERT(!vhpet_timer_msi_enabled(vhpet, n), ("vhpet_timer_edge_trig: "
"timer %d is using MSI", n));
if ((vhpet->timer[n].cap_config & HPET_TCNF_INT_TYPE) == 0)
return (true);
else
return (false);
}
static void
vhpet_timer_interrupt(struct vhpet *vhpet, int n)
{
int pin;
/* If interrupts are not enabled for this timer then just return. */
if (!vhpet_timer_interrupt_enabled(vhpet, n))
return;
/*
* If a level triggered interrupt is already asserted then just return.
*/
if ((vhpet->isr & (1 << n)) != 0) {
VM_CTR1(vhpet->vm, "hpet t%d intr is already asserted", n);
return;
}
if (vhpet_timer_msi_enabled(vhpet, n)) {
lapic_intr_msi(vhpet->vm, vhpet->timer[n].msireg >> 32,
vhpet->timer[n].msireg & 0xffffffff);
return;
}
pin = vhpet_timer_ioapic_pin(vhpet, n);
if (pin == 0) {
VM_CTR1(vhpet->vm, "hpet t%d intr is not routed to ioapic", n);
return;
}
if (vhpet_timer_edge_trig(vhpet, n)) {
vioapic_pulse_irq(vhpet->vm, pin);
} else {
vhpet->isr |= 1 << n;
vioapic_assert_irq(vhpet->vm, pin);
}
}
static void
vhpet_adjust_compval(struct vhpet *vhpet, int n, uint32_t counter)
{
uint32_t compval, comprate, compnext;
KASSERT(vhpet->timer[n].comprate != 0, ("hpet t%d is not periodic", n));
compval = vhpet->timer[n].compval;
comprate = vhpet->timer[n].comprate;
/*
* Calculate the comparator value to be used for the next periodic
* interrupt.
*
* This function is commonly called from the callout handler.
* In this scenario the 'counter' is ahead of 'compval'. To find
* the next value to program into the accumulator we divide the
* number space between 'compval' and 'counter' into 'comprate'
* sized units. The 'compval' is rounded up such that is "ahead"
* of 'counter'.
*/
compnext = compval + ((counter - compval) / comprate + 1) * comprate;
vhpet->timer[n].compval = compnext;
}
static void
vhpet_handler(void *a)
{
int n;
uint32_t counter;
sbintime_t now;
struct vhpet *vhpet;
struct callout *callout;
struct vhpet_callout_arg *arg;
arg = a;
vhpet = arg->vhpet;
n = arg->timer_num;
callout = &vhpet->timer[n].callout;
VM_CTR1(vhpet->vm, "hpet t%d fired", n);
VHPET_LOCK(vhpet);
if (callout_pending(callout)) /* callout was reset */
goto done;
if (!callout_active(callout)) /* callout was stopped */
goto done;
callout_deactivate(callout);
if (!vhpet_counter_enabled(vhpet))
xhyve_abort("vhpet(%p) callout with counter disabled\n", (void*)vhpet);
counter = vhpet_counter(vhpet, &now);
vhpet_start_timer(vhpet, n, counter, now);
vhpet_timer_interrupt(vhpet, n);
done:
VHPET_UNLOCK(vhpet);
return;
}
static void
vhpet_stop_timer(struct vhpet *vhpet, int n, sbintime_t now)
{
VM_CTR1(vhpet->vm, "hpet t%d stopped", n);
callout_stop(&vhpet->timer[n].callout);
/*
* If the callout was scheduled to expire in the past but hasn't
* had a chance to execute yet then trigger the timer interrupt
* here. Failing to do so will result in a missed timer interrupt
* in the guest. This is especially bad in one-shot mode because
* the next interrupt has to wait for the counter to wrap around.
*/
if (vhpet->timer[n].callout_sbt < now) {
VM_CTR1(vhpet->vm, "hpet t%d interrupt triggered after "
"stopping timer", n);
vhpet_timer_interrupt(vhpet, n);
}
}
static void
vhpet_start_timer(struct vhpet *vhpet, int n, uint32_t counter, sbintime_t now)
{
sbintime_t delta;
if (vhpet->timer[n].comprate != 0)
vhpet_adjust_compval(vhpet, n, counter);
else {
/*
* In one-shot mode it is the guest's responsibility to make
* sure that the comparator value is not in the "past". The
* hardware doesn't have any belt-and-suspenders to deal with
* this so we don't either.
*/
}
delta = (vhpet->timer[n].compval - counter) * vhpet->freq_sbt;
vhpet->timer[n].callout_sbt = now + delta;
callout_reset_sbt(&vhpet->timer[n].callout, vhpet->timer[n].callout_sbt,
0, vhpet_handler, &vhpet->timer[n].arg, C_ABSOLUTE);
}
static void
vhpet_start_counting(struct vhpet *vhpet)
{
int i;
vhpet->countbase_sbt = sbinuptime();
for (i = 0; i < VHPET_NUM_TIMERS; i++) {
/*
* Restart the timers based on the value of the main counter
* when it stopped counting.
*/
vhpet_start_timer(vhpet, i, vhpet->countbase,
vhpet->countbase_sbt);
}
}
static void
vhpet_stop_counting(struct vhpet *vhpet, uint32_t counter, sbintime_t now)
{
int i;
vhpet->countbase = counter;
for (i = 0; i < VHPET_NUM_TIMERS; i++)
vhpet_stop_timer(vhpet, i, now);
}
static __inline void
update_register(uint64_t *regptr, uint64_t data, uint64_t mask)
{
*regptr &= ~mask;
*regptr |= (data & mask);
}
static void
vhpet_timer_update_config(struct vhpet *vhpet, int n, uint64_t data,
uint64_t mask)
{
bool clear_isr;
int old_pin, new_pin;
uint32_t allowed_irqs;
uint64_t oldval, newval;
if (vhpet_timer_msi_enabled(vhpet, n) ||
vhpet_timer_edge_trig(vhpet, n)) {
if (vhpet->isr & (1 << n))
xhyve_abort("vhpet timer %d isr should not be asserted\n", n);
}
old_pin = vhpet_timer_ioapic_pin(vhpet, n);
oldval = vhpet->timer[n].cap_config;
newval = oldval;
update_register(&newval, data, mask);
newval &= ~(HPET_TCAP_RO_MASK | HPET_TCNF_32MODE);
newval |= oldval & HPET_TCAP_RO_MASK;
if (newval == oldval)
return;
vhpet->timer[n].cap_config = newval;
VM_CTR2(vhpet->vm, "hpet t%d cap_config set to 0x%016llx", n, newval);
/*
* Validate the interrupt routing in the HPET_TCNF_INT_ROUTE field.
* If it does not match the bits set in HPET_TCAP_INT_ROUTE then set
* it to the default value of 0.
*/
allowed_irqs = vhpet->timer[n].cap_config >> 32;
new_pin = vhpet_timer_ioapic_pin(vhpet, n);
if (new_pin != 0 && (allowed_irqs & (1 << new_pin)) == 0) {
VM_CTR3(vhpet->vm, "hpet t%d configured invalid irq %d, "
"allowed_irqs 0x%08x", n, new_pin, allowed_irqs);
new_pin = 0;
vhpet->timer[n].cap_config &= ~((uint64_t) HPET_TCNF_INT_ROUTE);
}
if (!vhpet_periodic_timer(vhpet, n))
vhpet->timer[n].comprate = 0;
/*
* If the timer's ISR bit is set then clear it in the following cases:
* - interrupt is disabled
* - interrupt type is changed from level to edge or fsb.
* - interrupt routing is changed
*
* This is to ensure that this timer's level triggered interrupt does
* not remain asserted forever.
*/
if (vhpet->isr & (1 << n)) {
KASSERT(old_pin != 0, ("timer %d isr asserted to ioapic pin %d",
n, old_pin));
if (!vhpet_timer_interrupt_enabled(vhpet, n))
clear_isr = true;
else if (vhpet_timer_msi_enabled(vhpet, n))
clear_isr = true;
else if (vhpet_timer_edge_trig(vhpet, n))
clear_isr = true;
else if (vhpet_timer_ioapic_pin(vhpet, n) != old_pin)
clear_isr = true;
else
clear_isr = false;
if (clear_isr) {
VM_CTR1(vhpet->vm, "hpet t%d isr cleared due to "
"configuration change", n);
vioapic_deassert_irq(vhpet->vm, old_pin);
vhpet->isr &= ~(1 << n);
}
}
}
int
vhpet_mmio_write(void *vm, UNUSED int vcpuid, uint64_t gpa, uint64_t val, int size,
UNUSED void *arg)
{
struct vhpet *vhpet;
uint64_t data, mask, oldval, val64;
uint32_t isr_clear_mask, old_compval, old_comprate, counter;
sbintime_t now, *nowptr;
int i, offset;
now = 0;
vhpet = vm_hpet(vm);
offset = (int) (gpa - VHPET_BASE);
VHPET_LOCK(vhpet);
/* Accesses to the HPET should be 4 or 8 bytes wide */
switch (size) {
case 8:
mask = 0xffffffffffffffff;
data = val;
break;
case 4:
mask = 0xffffffff;
data = val;
if ((offset & 0x4) != 0) {
mask <<= 32;
data <<= 32;
}
break;
default:
VM_CTR2(vhpet->vm, "hpet invalid mmio write: "
"offset 0x%08x, size %d", offset, size);
goto done;
}
/* Access to the HPET should be naturally aligned to its width */
if (offset & (size - 1)) {
VM_CTR2(vhpet->vm, "hpet invalid mmio write: "
"offset 0x%08x, size %d", offset, size);
goto done;
}
if (offset == HPET_CONFIG || offset == HPET_CONFIG + 4) {
/*
* Get the most recent value of the counter before updating
* the 'config' register. If the HPET is going to be disabled
* then we need to update 'countbase' with the value right
* before it is disabled.
*/
nowptr = vhpet_counter_enabled(vhpet) ? &now : NULL;
counter = vhpet_counter(vhpet, nowptr);
oldval = vhpet->config;
update_register(&vhpet->config, data, mask);
/*
* LegacyReplacement Routing is not supported so clear the
* bit explicitly.
*/
vhpet->config &= ~((uint64_t) HPET_CNF_LEG_RT);
if ((oldval ^ vhpet->config) & HPET_CNF_ENABLE) {
if (vhpet_counter_enabled(vhpet)) {
vhpet_start_counting(vhpet);
VM_CTR0(vhpet->vm, "hpet enabled");
} else {
vhpet_stop_counting(vhpet, counter, now);
VM_CTR0(vhpet->vm, "hpet disabled");
}
}
goto done;
}
if (offset == HPET_ISR || offset == HPET_ISR + 4) {
isr_clear_mask = (uint32_t) (vhpet->isr & data);
for (i = 0; i < VHPET_NUM_TIMERS; i++) {
if ((isr_clear_mask & (1 << i)) != 0) {
VM_CTR1(vhpet->vm, "hpet t%d isr cleared", i);
vhpet_timer_clear_isr(vhpet, i);
}
}
goto done;
}
if (offset == HPET_MAIN_COUNTER || offset == HPET_MAIN_COUNTER + 4) {
/* Zero-extend the counter to 64-bits before updating it */
val64 = vhpet_counter(vhpet, NULL);
update_register(&val64, data, mask);
vhpet->countbase = (uint32_t) val64;
if (vhpet_counter_enabled(vhpet))
vhpet_start_counting(vhpet);
goto done;
}
for (i = 0; i < VHPET_NUM_TIMERS; i++) {
if (offset == HPET_TIMER_CAP_CNF(i) ||
offset == HPET_TIMER_CAP_CNF(i) + 4) {
vhpet_timer_update_config(vhpet, i, data, mask);
break;
}
if (offset == HPET_TIMER_COMPARATOR(i) ||
offset == HPET_TIMER_COMPARATOR(i) + 4) {
old_compval = vhpet->timer[i].compval;
old_comprate = vhpet->timer[i].comprate;
if (vhpet_periodic_timer(vhpet, i)) {
/*
* In periodic mode writes to the comparator
* change the 'compval' register only if the
* HPET_TCNF_VAL_SET bit is set in the config
* register.
*/
val64 = vhpet->timer[i].comprate;
update_register(&val64, data, mask);
vhpet->timer[i].comprate = (uint32_t) val64;
if ((vhpet->timer[i].cap_config &
HPET_TCNF_VAL_SET) != 0) {
vhpet->timer[i].compval = (uint32_t) val64;
}
} else {
KASSERT(vhpet->timer[i].comprate == 0,
("vhpet one-shot timer %d has invalid "
"rate %u", i, vhpet->timer[i].comprate));
val64 = vhpet->timer[i].compval;
update_register(&val64, data, mask);
vhpet->timer[i].compval = (uint32_t) val64;
}
vhpet->timer[i].cap_config &= ~((uint64_t) HPET_TCNF_VAL_SET);
if (vhpet->timer[i].compval != old_compval ||
vhpet->timer[i].comprate != old_comprate) {
if (vhpet_counter_enabled(vhpet)) {
counter = vhpet_counter(vhpet, &now);
vhpet_start_timer(vhpet, i, counter,
now);
}
}
break;
}
if (offset == HPET_TIMER_FSB_VAL(i) ||
offset == HPET_TIMER_FSB_ADDR(i)) {
update_register(&vhpet->timer[i].msireg, data, mask);
break;
}
}
done:
VHPET_UNLOCK(vhpet);
return (0);
}
int
vhpet_mmio_read(void *vm, UNUSED int vcpuid, uint64_t gpa, uint64_t *rval, int size,
UNUSED void *arg)
{
int i, offset;
struct vhpet *vhpet;
uint64_t data;
data = 0;
vhpet = vm_hpet(vm);
offset = (int) (gpa - VHPET_BASE);
VHPET_LOCK(vhpet);
/* Accesses to the HPET should be 4 or 8 bytes wide */
if (size != 4 && size != 8) {
VM_CTR2(vhpet->vm, "hpet invalid mmio read: "
"offset 0x%08x, size %d", offset, size);
data = 0;
goto done;
}
/* Access to the HPET should be naturally aligned to its width */
if (offset & (size - 1)) {
VM_CTR2(vhpet->vm, "hpet invalid mmio read: "
"offset 0x%08x, size %d", offset, size);
data = 0;
goto done;
}
if (offset == HPET_CAPABILITIES || offset == HPET_CAPABILITIES + 4) {
data = vhpet_capabilities();
goto done;
}
if (offset == HPET_CONFIG || offset == HPET_CONFIG + 4) {
data = vhpet->config;
goto done;
}
if (offset == HPET_ISR || offset == HPET_ISR + 4) {
data = vhpet->isr;
goto done;
}
if (offset == HPET_MAIN_COUNTER || offset == HPET_MAIN_COUNTER + 4) {
data = vhpet_counter(vhpet, NULL);
goto done;
}
for (i = 0; i < VHPET_NUM_TIMERS; i++) {
if (offset == HPET_TIMER_CAP_CNF(i) ||
offset == HPET_TIMER_CAP_CNF(i) + 4) {
data = vhpet->timer[i].cap_config;
break;
}
if (offset == HPET_TIMER_COMPARATOR(i) ||
offset == HPET_TIMER_COMPARATOR(i) + 4) {
data = vhpet->timer[i].compval;
break;
}
if (offset == HPET_TIMER_FSB_VAL(i) ||
offset == HPET_TIMER_FSB_ADDR(i)) {
data = vhpet->timer[i].msireg;
break;
}
}
if (i >= VHPET_NUM_TIMERS)
data = 0;
done:
VHPET_UNLOCK(vhpet);
if (size == 4) {
if (offset & 0x4)
data >>= 32;
}
*rval = data;
return (0);
}
struct vhpet *
vhpet_init(struct vm *vm)
{
int i, pincount;
struct vhpet *vhpet;
uint64_t allowed_irqs;
struct vhpet_callout_arg *arg;
struct bintime bt;
vhpet = malloc(sizeof(struct vhpet));
assert(vhpet);
bzero(vhpet, sizeof(struct vhpet));
vhpet->vm = vm;
pthread_mutex_init(&vhpet->mtx, NULL);
FREQ2BT(HPET_FREQ, &bt);
vhpet->freq_sbt = bttosbt(bt);
pincount = vioapic_pincount(vm);
if (pincount >= 24)
allowed_irqs = 0x00f00000; /* irqs 20, 21, 22 and 23 */
else
allowed_irqs = 0;
/*
* Initialize HPET timer hardware state.
*/
for (i = 0; i < VHPET_NUM_TIMERS; i++) {
vhpet->timer[i].cap_config = allowed_irqs << 32;
vhpet->timer[i].cap_config |= HPET_TCAP_PER_INT;
vhpet->timer[i].cap_config |= HPET_TCAP_FSB_INT_DEL;
vhpet->timer[i].compval = 0xffffffff;
callout_init(&vhpet->timer[i].callout, 1);
arg = &vhpet->timer[i].arg;
arg->vhpet = vhpet;
arg->timer_num = i;
}
return (vhpet);
}
void
vhpet_cleanup(struct vhpet *vhpet)
{
int i;
for (i = 0; i < VHPET_NUM_TIMERS; i++)
callout_drain(&vhpet->timer[i].callout);
free(vhpet);
}
int
vhpet_getcap(uint32_t *cap)
{
*cap = (uint32_t) vhpet_capabilities();
return (0);
}