This microservice, designed for Language Model Inference (LLM), processes input consisting of a query string and associated reranked documents. It constructs a prompt based on the query and documents, which is then used to perform inference with a large language model. The service delivers the inference results as output.
A prerequisite for using this microservice is that users must have a LLM text generation service (etc., TGI, vLLM and Ray) already running. Users need to set the LLM service's endpoint into an environment variable. The microservice utilizes this endpoint to create an LLM object, enabling it to communicate with the LLM service for executing language model operations.
Overall, this microservice offers a streamlined way to integrate large language model inference into applications, requiring minimal setup from the user beyond initiating a TGI/vLLM/Ray service and configuring the necessary environment variables. This allows for the seamless processing of queries and documents to generate intelligent, context-aware responses.
To start the LLM microservice, you need to install python packages first.
pip install -r requirements.txt
export HF_TOKEN=${your_hf_api_token}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=${your_langchain_api_key}
export LANGCHAIN_PROJECT="opea/gen-ai-comps:llms"
docker run -p 8008:80 -v ./data:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:1.4 --model-id ${your_hf_llm_model}
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
docker run -it --name vllm_service -p 8008:80 -e HF_TOKEN=${HUGGINGFACEHUB_API_TOKEN} -v ./data:/data vllm:cpu /bin/bash -c "cd / && export VLLM_CPU_KVCACHE_SPACE=40 && python3 -m vllm.entrypoints.openai.api_server --model ${your_hf_llm_model} --port 80"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export TRUST_REMOTE_CODE=True
docker run -it --runtime=habana --name ray_serve_service -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host -p 8008:80 -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN -e TRUST_REMOTE_CODE=$TRUST_REMOTE_CODE ray_serve:habana /bin/bash -c "ray start --head && python api_server_openai.py --port_number 80 --model_id_or_path ${your_hf_llm_model} --chat_processor ${your_hf_chatprocessor}"
curl http://${your_ip}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
curl http://${your_ip}:8008/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": ${your_hf_llm_model},
"prompt": "What is Deep Learning?",
"max_tokens": 32,
"temperature": 0
}'
curl http://${your_ip}:8008/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": ${your_hf_llm_model},
"messages": [
{"role": "assistant", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is Deep Learning?"},
],
"max_tokens": 32,
"stream": True
}'
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
python text-generation/tgi/llm.py
export vLLM_LLM_ENDPOINT="http://${your_ip}:8008"
python text-generation/vllm/llm.py
export RAY_Serve_ENDPOINT="http://${your_ip}:8008"
python text-generation/ray_serve/llm.py
If you start an LLM microservice with docker, the docker_compose_llm.yaml
file will automatically start a TGI/vLLM service with docker.
In order to start TGI and LLM services, you need to setup the following environment variables first.
export HF_TOKEN=${your_hf_api_token}
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=${your_langchain_api_key}
export LANGCHAIN_PROJECT="opea/llms"
In order to start vLLM and LLM services, you need to setup the following environment variables first.
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export vLLM_LLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_PROJECT="opea/llms"
In order to start Ray serve and LLM services, you need to setup the following environment variables first.
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export RAY_Serve_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL=${your_hf_llm_model}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_PROJECT="opea/llms"
export CHAT_PROCESSOR="ChatModelLlama"
cd ../../
docker build -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
Build vllm docker.
bash build_docker_vllm.sh
Build microservice docker.
cd ../../../../
docker build -t opea/llm-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/docker/Dockerfile.microservice .
Build Ray Serve docker.
bash build_docker_rayserve.sh
Build microservice docker.
cd ../../../../
docker build -t opea/llm-ray:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/ray_serve/docker/Dockerfile.microservice .
To start a docker container, you have two options:
- A. Run Docker with CLI
- B. Run Docker with Docker Compose
You can choose one as needed.
docker run -d --name="llm-tgi-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e TGI_LLM_ENDPOINT=$TGI_LLM_ENDPOINT -e HF_TOKEN=$HF_TOKEN opea/llm-tgi:latest
Start vllm endpoint.
bash launch_vllm_service.sh
Start vllm microservice.
docker run --name="llm-vllm-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=${no_proxy} -e vLLM_LLM_ENDPOINT=$vLLM_LLM_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN -e LLM_MODEL_ID=$LLM_MODEL_ID opea/llm-vllm:latest
Start Ray Serve endpoint.
bash launch_ray_service.sh
Start Ray Serve microservice.
docker run -d --name="llm-ray-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e RAY_Serve_ENDPOINT=$RAY_Serve_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN -e LLM_MODEL=$LLM_MODEL opea/llm-ray:latest
cd text-generation/tgi
docker compose -f docker_compose_llm.yaml up -d
cd text-generation/vllm
docker compose -f docker_compose_llm.yaml up -d
cd text-genetation/ray_serve
docker compose -f docker_compose_llm.yaml up -d
curl http://${your_ip}:9000/v1/health_check\
-X GET \
-H 'Content-Type: application/json'
You can set the following model parameters according to your actual needs, such as max_new_tokens
, streaming
.
The streaming
parameter determines the format of the data returned by the API. It will return text string with streaming=false
, return text streaming flow with streaming=true
.
# non-streaming mode
curl http://${your_ip}:9000/v1/chat/completions \
-X POST \
-d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
-H 'Content-Type: application/json'
# streaming mode
curl http://${your_ip}:9000/v1/chat/completions \
-X POST \
-d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
-H 'Content-Type: application/json'
Model | TGI-Gaudi | vLLM-CPU | vLLM-Gaudi | Ray |
---|---|---|---|---|
Intel/neural-chat-7b-v3-3 | ✓ | ✓ | ✓ | ✓ |
Llama-2-7b-chat-hf | ✓ | ✓ | ✓ | ✓ |
Llama-2-70b-chat-hf | ✓ | - | ✓ | x |
Meta-Llama-3-8B-Instruct | ✓ | ✓ | ✓ | ✓ |
Meta-Llama-3-70B-Instruct | ✓ | - | ✓ | x |
Phi-3 | x | Limit 4K | Limit 4K | ✓ |