-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinputs.py
123 lines (98 loc) · 4.47 KB
/
inputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import time
import nibabel as nib
import numpy as np
import torch
import torch.utils.data as data
from skimage.exposure import adjust_gamma, adjust_sigmoid
from skimage.filters import sobel_h
from skimage.transform import rotate, rescale
def _get_boundary(im):
"""Find the upper and lower boundary between body and background."""
edge_sobel = sobel_h(im)
threshold = np.max(edge_sobel) / 20
top, bottom = np.where(edge_sobel > threshold)[0][[0, -1]] # index arrays
return top, bottom
def _banish_darkness(xs, ys):
"""Clip black background region from nii raw data along y-axis, to alleviate computations.
Argument:
A tuple consists (image_3d, label_3d)
image_3d: int16 with shape [depth, height, width]
label_3d: uint8 with shape [depth, height, width]
Return:
tuples of (images, labels, top, bottom).
+ images: [depth, reduced_height, width]
+ labels: [depth, reduced_height, width]
+ top: upper boundary
+ bottom: lower boundary
"""
boundaries = np.array([_get_boundary(im) for im in xs])
t, b = np.mean(boundaries, axis=0).astype(np.uint8)
# Empirically the lower boundary is more robust.
if (b - t) < 180:
t = b - 180
return xs[:, t: b, :], ys[:, t: b, :], t, b
def _augment(xs):
"""Image adjustment doesn't change image shape, but for intensity.
Return:
images: 4-d tensor with shape [depth, height, width, channels]
"""
# `xs` has shape [depth, height, width] with value in [0, 1].
gamma = np.random.uniform(low=0.9, high=1.1)
return adjust_gamma(xs, gamma)
def _rotate_and_rescale(xs, ys):
"""Rotate images and labels and scale image and labels by a certain factor.
Both need to swap axis from [depth, height, width] to [height, width, depth]
required by skimage.transform library.
"""
degree = np.int(np.random.uniform(low=-3, high=5))
factor = np.random.uniform(low=0.85, high=0.95)
# swap axis
HWC_xs, HWC_ys = [np.transpose(item, [1, 2, 0]) for item in [xs, ys]]
# rotate and rescale
HWC_xs, HWC_ys = [rotate(item, degree, mode='symmetric', preserve_range=True) for item in [HWC_xs, HWC_ys]]
HWC_xs, HWC_ys = [rescale(item, factor, mode='symmetric', preserve_range=True) for item in [HWC_xs, HWC_ys]]
# swap back
xs, ys = [np.transpose(item, [2, 0, 1]) for item in [HWC_xs, HWC_ys]]
return xs, ys
def _translate(xs, ys):
"""Perform translate, and the displacement is skewed to 0.
In detail, take samples from the modified power function distribution.
"""
samples = np.random.power(5, size=4) # samples now in range [0, 1]
skewed_samples = np.int8((- samples + 2) * 15) # skewed_samples in range [1, 16]
r1, c1, r2, c2 = skewed_samples # discard 0 for indexing `-0`
trans_xs, trans_ys = [item[:, r1: -r2, c1: -c2] for item in [xs, ys]]
return trans_xs, trans_ys
class DatasetFromFolder(data.Dataset):
def __init__(self, data_path='./data/train'):
"""Assume dataset is in directory '.data/train' or './data/val'
1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
2. Preprocess the data (e.g. torchvision.Transform).
3. Return a data pair (e.g. image and label).
"""
super(DatasetFromFolder, self).__init__()
self.data_path = data_path
self.label_path = [os.path.join(self.data_path, p)
for p in os.listdir(self.data_path) if p.endswith('Label.nii')]
self.image_path = [p.replace('_Label', '') for p in self.label_path]
def __getitem__(self, index):
# Set random seed for ramdom augment.
np.random.seed(int(time.time()))
# Load nii file.
xs, ys = [nib.load(p[index]).get_data() for p in [self.image_path, self.label_path]]
# Crop black region to reduce nii volumes.
xs, ys, *_ = _banish_darkness(xs, ys)
# Normalize, `xs` with dtype float64
xs = (xs - np.min(xs)) / (np.max(xs) - np.min(xs))
# Image augment.
xs, ys = _rotate_and_rescale(xs, ys)
xs, ys = _translate(xs, ys)
xs = _augment(xs)
# Regenerate the binary label, just in case.
ys = (ys > 0.5).astype(np.uint8)
# Add gray image channel, with shape [1, depth, height, width]
xs, ys = [item[np.newaxis, ...] for item in [xs, ys]]
return torch.from_numpy(xs), torch.from_numpy(ys)
def __len__(self):
return len(self.image_path)