forked from NVIDIA/sentiment-discovery
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain.py
executable file
·402 lines (343 loc) · 15.7 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# transformer_main.py
import argparse
import os
import sys
import time
import math
import random
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from fp16 import FP16_Module, FP16_Optimizer
import data
import model as m
from model import DistributedDataParallel as DDP
from reparameterization import apply_weight_norm, remove_weight_norm
from configure_data import configure_data
from learning_rates import AnnealingLR, WarmupLR, SlantedTriangularLR
from arguments import add_general_args, add_model_args, add_unsupervised_data_args
rnn_model = None
def setup_model_and_optim(args, train_data, tokenizer):
ntokens = args.data_size
if args.model.lower() == 'transformer':
embed_tokens = m.Embedding(ntokens, args.decoder_embed_dim, padding_idx=tokenizer.command_name_map['pad'].Id)
model = m.TransformerModel(m.DecoderPreprocessor(args, embed_tokens),
m.TransformerDecoder(args, embed_tokens))
else:
model = m.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.tied)
global rnn_model
rnn_model = model
LR_Warmer = None
print('* number of parameters: %d' % sum([p.nelement() for p in model.parameters()]))
if args.cuda:
model.cuda()
optim = None
if args.load is not None and args.load != '':
sd = torch.load(args.load, map_location='cpu')
if args.load_optim:
#optim_sd = torch.load(os.path.join(os.path.dirname(args.load), 'optim.pt'), map_location='cpu')
rng = torch.load(os.path.join(os.path.dirname(args.load), 'rng.pt'))
torch.cuda.set_rng_state(rng[0])
torch.set_rng_state(rng[1])
try:
model.load_state_dict(sd)
except:
if hasattr(model, 'rnn'):
apply_weight_norm(model.rnn, hook_child=False)
else:
apply_weight_norm(model, hook_child=False)
model.load_state_dict(sd)
remove_weight_norm(model)
if not args.no_weight_norm:
if hasattr(model, 'rnn'):
apply_weight_norm(model.rnn, hook_child=False)
else:
apply_weight_norm(model, hook_child=False)
if optim is None:
optim_choice = 'Adam' if args.stlr_cut_frac else args.optim
if args.fp16:
model = FP16_Module(model)
optim = eval('torch.optim.'+args.optim)(model.parameters(), lr=args.lr)
optim = FP16_Optimizer(optim,
static_loss_scale=args.loss_scale,
dynamic_loss_scale=args.dynamic_loss_scale)
else:
optim = eval('torch.optim.'+args.optim)(model.parameters(), lr=args.lr)
if args.load_optim:
optim.load_state_dict(optim_sd)
# add linear learning rate scheduler
if train_data is not None:
if args.constant_decay:
num_iters = args.constant_decay
else:
num_iters = args.train_iters * args.epochs
init_step = -1
if args.load_optim:
#TODO: this no longer makes sense given the new data loaders
init_step = optim_sd['iter']-optim_sd['skipped_iter']
train_data.batch_sampler.start_iter = (optim_sd['iter'] % len(train_data)) + 1
warmup_iter = args.warmup * num_iters
if args.stlr_cut_frac is not None:
LR = SlantedTriangularLR(optim, cut_frac=args.stlr_cut_frac, num_iters=num_iters)
else:
LR = AnnealingLR(optim, start_lr=args.lr, warmup_iter=warmup_iter, num_iters=num_iters, decay_style=args.decay_style)
if args.warmup != 0:
LR_Warmer = WarmupLR(optim, warmup_iter, last_iter=init_step)
# wrap model for distributed training
if args.world_size > 1:
model = DDP(model)
criterion = nn.CrossEntropyLoss(reduce=False)
return model, optim, LR, LR_Warmer, criterion
###############################################################################
# Training code
###############################################################################
# get_batch subdivides the source data into chunks of length args.seq_length.
# If source is equal to the example output of the data loading example, with
# a seq_length limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the data loader. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM. A Variable representing an appropriate
# shard reset mask of the same dimensions is also returned.
def get_batch(data, args):
reset_mask_batch = data[1].long()
padding_mask_batch = data[2].float()
data = data[0].long()
if args.cuda:
data = data.cuda()
reset_mask_batch = reset_mask_batch.cuda()
padding_mask_batch = padding_mask_batch.cuda()
text_batch = Variable(data[:,:-1].t().contiguous(), requires_grad=False)
target_batch = Variable(data[:,1:].t().contiguous(), requires_grad=False)
reset_mask_batch = Variable(reset_mask_batch[:,:text_batch.size(0)].t().contiguous(), requires_grad=False)
padding_mask_batch = Variable(padding_mask_batch[:,:text_batch.size(0)].t().contiguous(), requires_grad=False)
return text_batch, target_batch, reset_mask_batch, padding_mask_batch
def init_hidden(args):
if rnn_model is not None:
rnn_model.rnn.init_hidden(args.batch_size)
def evaluate(data_source, model, criterion, args):
# Turn on evaluation mode which disables dropout.
model.eval()
init_hidden(args)
total_loss = 0
ntokens = args.data_size
max_iters = args.eval_iters
with torch.no_grad():
data_iter = iter(data_source)
i = 0
while i < max_iters:
batch = next(data_iter)
data, targets, reset_mask, padding_mask = get_batch(batch, args)
output, hidden = model(data, reset_mask=reset_mask)
losses = criterion(output.view(-1, ntokens).contiguous().float(), targets.view(-1).contiguous())
padding_mask = padding_mask.view(-1)
portion_unpadded = padding_mask.sum() / padding_mask.size(0)
loss = portion_unpadded * torch.mean(losses * (padding_mask.view(-1).float()))
if isinstance(model, DDP):
torch.distributed.all_reduce(loss.data)
loss.data /= args.world_size
total_loss += loss.data.float()
i+=1
return (total_loss / max_iters).item()
def train(epoch, model, optim, train_data, LR, LR_Warmer, criterion, args, total_iters=0, skipped_iters=0, elapsed_time=False):
# Turn on training mode which enables dropout.
model.train()
init_hidden(args)
total_loss = 0
start_time = time.time()
t0 = start_time
ntokens = args.data_size
curr_loss = 0.
distributed = isinstance(model, DDP)
max_iters = args.train_iters
def log(epoch, i, lr, ms_iter, total_time, loss, scale):
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:.2E} | ms/batch {:.3E} | total time {:.3E}\
loss {:.2E} | ppl {:8.2f} | loss scale {:8.2f}'.format(
epoch, i, max_iters, lr,
ms_iter, total_time, loss, math.exp(min(loss, 20)), scale
)
)
i = 0
data_iter = iter(train_data)
while i < max_iters:
batch = next(data_iter)
data, targets, reset_mask, padding_mask = get_batch(batch, args)
optim.zero_grad()
output, _ = model(data, reset_mask=reset_mask, chkpt_grad=args.chkpt_grad)
losses = criterion(output.view(-1, ntokens).contiguous().float(), targets.view(-1).contiguous())
padding_mask = padding_mask.view(-1)
portion_unpadded = padding_mask.sum() / padding_mask.size(0)
loss = portion_unpadded * torch.mean(losses * (padding_mask.view(-1).float()))
total_loss += loss.data.float()
if args.fp16:
optim.backward(loss, update_master_grads=False)
else:
loss.backward()
if distributed:
torch.distributed.all_reduce(loss.data)
loss.data = loss.data/args.world_size
model.allreduce_params()
# clipping gradients helps prevent the exploding gradient problem in RNNs / LSTMs.
if args.clip > 0:
if not args.fp16:
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
else:
optim.clip_master_grads(clip=args.clip)
if args.fp16:
optim.update_master_grads()
optim.step()
# step learning rate and log training progress
lr = optim.param_groups[0]['lr']
if not args.fp16:
LR.step()
if args.warmup != 0:
LR_Warmer.step()
else:
# if fp16 optimizer skips gradient step due to explosion do not step lr
if not optim.overflow:
LR.step()
if args.warmup != 0:
LR_Warmer.step()
else:
skipped_iters += 1
if ((i+1) % args.log_interval == 0):
cur_loss = total_loss.item() / args.log_interval
cur_time = time.time()
elapsed = cur_time - start_time
total_elapsed = cur_time - t0 + elapsed_time
log(epoch, i+1, lr, elapsed * 1000 / args.log_interval, total_elapsed,
cur_loss, args.loss_scale if not args.fp16 else optim.loss_scale)
total_loss = 0
start_time = cur_time
sys.stdout.flush()
# save current model progress. If distributed only save from worker 0
if args.save_iters and total_iters % (args.save_iters) == 0 and total_iters > 0 and args.rank < 1:
if args.rank < 1:
with open(os.path.join(os.path.splitext(args.save)[0], 'e%s.pt'%(str(total_iters),)), 'wb') as f:
torch.save(model.state_dict(), f)
if args.save_optim:
with open(os.path.join(os.path.splitext(args.save)[0], 'optim.pt'), 'wb') as f:
optim_sd = optim.state_dict()
optim_sd['iter'] = total_iters
optim_sd['skipped_iter'] = skipped_iters
torch.save(optim_sd, f)
del optim_sd
with open(os.path.join(os.path.splitext(args.save)[0], 'rng.pt'), 'wb') as f:
torch.save((torch.cuda.get_rng_state(), torch.get_rng_state()),f)
if args.cuda:
torch.cuda.synchronize()
total_iters += 1
i+=1
#final logging
elapsed_iters = max_iters % args.log_interval
if elapsed_iters == 0:
return cur_loss, skipped_iters
cur_time = time.time()
elapsed = cur_time - start_time
total_elapsed = cur_time - t0 + elapsed_time
cur_loss = total_loss.item() / args.log_interval
log(epoch, max_iters, lr, elapsed * 1000/ elapsed_iters, total_elapsed,
cur_loss, args.loss_scale if not args.fp16 else optim.loss_scale)
return cur_loss, skipped_iters
def main():
parser = argparse.ArgumentParser(description='PyTorch Sentiment-Discovery Language Modeling')
parser = add_general_args(parser)
parser = add_model_args(parser)
data_config, data_parser = add_unsupervised_data_args(parser)
args = parser.parse_args()
torch.backends.cudnn.enabled = False
args.cuda = torch.cuda.is_available()
if args.multinode_init:
args.rank = int(os.getenv('RANK', 0))
args.world_size = int(os.getenv("WORLD_SIZE", 1))
# initialize distributed process group and set device
if args.rank > 0:
torch.cuda.set_device(args.rank % torch.cuda.device_count())
if args.world_size > 1:
init_method='tcp://'
if not args.multinode_init:
init_method+='localhost:6000'
else:
master_ip = os.getenv('MASTER_ADDR', 'localhost')
master_port = os.getenv('MASTER_PORT', '6666')
init_method+=master_ip+':'+master_port
torch.distributed.init_process_group(backend=args.distributed_backend, world_size=args.world_size,
rank=args.rank, init_method=init_method)
# Set the random seed manually for reproducibility.
if args.seed is not None and args.seed > 0:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if args.loss_scale != 1 and args.dynamic_loss_scale:
raise RuntimeError("Static loss scale and dynamic loss scale cannot be used together.")
(train_data, val_data, test_data), tokenizer = data_config.apply(args)
args.data_size = tokenizer.num_tokens
model, optim, LR, LR_Warmer, criterion = setup_model_and_optim(args, train_data, tokenizer)
lr = args.lr
best_val_loss = None
# If saving process intermittently create directory for saving
if args.save_iters > 0 and not os.path.exists(os.path.splitext(args.save)[0]) and args.rank < 1:
os.makedirs(os.path.splitext(args.save)[0])
# At any point you can hit Ctrl + C to break out of training early.
try:
total_iters = 0
elapsed_time = 0
skipped_iters = 0
if args.load_optim:
total_iters = optim_sd['iter']
skipped_iters = optim_sd['skipped_iter']
for epoch in range(1, args.epochs+1):
if args.rank <= 0:
with open(args.save+'.train_lock', 'wb') as f:
pass
epoch_start_time = time.time()
val_loss, skipped_iters = train(epoch, model, optim, train_data, LR, LR_Warmer, criterion,
args, total_iters, skipped_iters, elapsed_time)
elapsed_time += time.time() - epoch_start_time
total_iters += args.train_iters
if val_data is not None:
print('entering eval')
val_loss = evaluate(val_data, model, criterion, args)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.4f} | '
'valid ppl {:8.4f}'.format(epoch, (time.time() - epoch_start_time),
val_loss, math.exp(min(val_loss, 20))))
print('-' * 89)
# Save the model if the validation loss is the best we've seen so far.
if (not best_val_loss or val_loss < best_val_loss) and args.rank <= 0:
torch.save(model.state_dict(), args.save)
best_val_loss = val_loss
if args.world_size == 1 or torch.distributed.get_rank() == 0:
try:
os.remove(args.save+'.train_lock')
except:
pass
# if args.world_size > 1:
# torch.distributed.barrier()
torch.cuda.synchronize()
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
#while os.path.exists(args.save+'.train_lock'):
# time.sleep(1)
# Load the best saved model.
#if os.path.exists(args.save):
# model.load_state_dict(torch.load(args.save, 'cpu'))
# if not args.no_weight_norm and args.rank <= 0:
# remove_weight_norm(model)
# torch.save(model.state_dict(), args.save)
if test_data is not None:
# Run on test data.
print('entering test')
test_loss = evaluate(test_data, model, criterion, args)
print('=' * 89)
print('| End of training | test loss {:5.4f} | test ppl {:8.4f}'.format(
test_loss, math.exp(min(test_loss, 20))))
print('=' * 89)
if __name__ == "__main__":
main()