forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
intersection-of-two-arrays-ii.py
164 lines (139 loc) · 4.52 KB
/
intersection-of-two-arrays-ii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# If the given array is not sorted and the memory is unlimited:
# - Time: O(m + n)
# - Space: O(min(m, n))
# elif the given array is already sorted:
# if m << n or m >> n:
# - Time: O(min(m, n) * log(max(m, n)))
# - Space: O(1)
# else:
# - Time: O(m + n)
# - Soace: O(1)
# else: (the given array is not sorted and the memory is limited)
# - Time: O(max(m, n) * log(max(m, n)))
# - Space: O(1)
# Given two arrays, write a function to compute their intersection.
#
# Example:
# Given nums1 = [1, 2, 2, 1], nums2 = [2, 2], return [2, 2].
#
# Note:
# Each element in the result should appear as many times as it shows in both arrays.
# The result can be in any order.
#
# Follow up:
# - What if the given array is already sorted? How would you optimize your algorithm?
# - What if nums1's size is small compared to num2's size? Which algorithm is better?
# - What if elements of nums2 are stored on disk, and the memory is limited such that
# you cannot load all elements into the memory at once?
# If the given array is not sorted and the memory is unlimited.
# Time: O(m + n)
# Space: O(min(m, n))
# Hash solution.
import collections
class Solution(object):
def intersect(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: List[int]
"""
if len(nums1) > len(nums2):
return self.intersect(nums2, nums1)
lookup = collections.defaultdict(int)
for i in nums1:
lookup[i] += 1
res = []
for i in nums2:
if lookup[i] > 0:
res += i,
lookup[i] -= 1
return res
def intersect2(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: List[int]
"""
c = collections.Counter(nums1) & collections.Counter(nums2)
intersect = []
for i in c:
intersect.extend([i] * c[i])
return intersect
# If the given array is already sorted, and the memory is limited, and (m << n or m >> n).
# Time: O(min(m, n) * log(max(m, n)))
# Space: O(1)
# Binary search solution.
class Solution(object):
def intersect(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: List[int]
"""
if len(nums1) > len(nums2):
return self.intersect(nums2, nums1)
def binary_search(compare, nums, left, right, target):
while left < right:
mid = left + (right - left) / 2
if compare(nums[mid], target):
right = mid
else:
left = mid + 1
return left
nums1.sort(), nums2.sort() # Make sure it is sorted, doesn't count in time.
res = []
left = 0
for i in nums1:
left = binary_search(lambda x, y: x >= y, nums2, left, len(nums2), i)
if left != len(nums2) and nums2[left] == i:
res += i,
left += 1
return res
# If the given array is already sorted, and the memory is limited or m ~ n.
# Time: O(m + n)
# Soace: O(1)
# Two pointers solution.
class Solution(object):
def intersect(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: List[int]
"""
nums1.sort(), nums2.sort() # Make sure it is sorted, doesn't count in time.
res = []
it1, it2 = 0, 0
while it1 < len(nums1) and it2 < len(nums2):
if nums1[it1] < nums2[it2]:
it1 += 1
elif nums1[it1] > nums2[it2]:
it2 += 1
else:
res += nums1[it1],
it1 += 1
it2 += 1
return res
# If the given array is not sorted, and the memory is limited.
# Time: O(max(m, n) * log(max(m, n)))
# Space: O(1)
# Two pointers solution.
class Solution(object):
def intersect(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: List[int]
"""
nums1.sort(), nums2.sort() # O(max(m, n) * log(max(m, n)))
res = []
it1, it2 = 0, 0
while it1 < len(nums1) and it2 < len(nums2):
if nums1[it1] < nums2[it2]:
it1 += 1
elif nums1[it1] > nums2[it2]:
it2 += 1
else:
res += nums1[it1],
it1 += 1
it2 += 1
return res