forked from hpc203/yolact-opencv-dnn-cpp-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
349 lines (324 loc) · 9.58 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#define _CRT_SECURE_NO_WARNINGS
#include <fstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace dnn;
using namespace std;
extern const char* class_names[] = { "background",
"person", "bicycle", "car", "motorcycle", "airplane", "bus",
"train", "truck", "boat", "traffic light", "fire hydrant",
"stop sign", "parking meter", "bench", "bird", "cat", "dog",
"horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
"backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard", "tennis racket",
"bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
"banana", "apple", "sandwich", "orange", "broccoli", "carrot",
"hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop",
"mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
"toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush"
};
extern const unsigned char colors[81][3] = {
{56, 0, 255},
{226, 255, 0},
{0, 94, 255},
{0, 37, 255},
{0, 255, 94},
{255, 226, 0},
{0, 18, 255},
{255, 151, 0},
{170, 0, 255},
{0, 255, 56},
{255, 0, 75},
{0, 75, 255},
{0, 255, 169},
{255, 0, 207},
{75, 255, 0},
{207, 0, 255},
{37, 0, 255},
{0, 207, 255},
{94, 0, 255},
{0, 255, 113},
{255, 18, 0},
{255, 0, 56},
{18, 0, 255},
{0, 255, 226},
{170, 255, 0},
{255, 0, 245},
{151, 255, 0},
{132, 255, 0},
{75, 0, 255},
{151, 0, 255},
{0, 151, 255},
{132, 0, 255},
{0, 255, 245},
{255, 132, 0},
{226, 0, 255},
{255, 37, 0},
{207, 255, 0},
{0, 255, 207},
{94, 255, 0},
{0, 226, 255},
{56, 255, 0},
{255, 94, 0},
{255, 113, 0},
{0, 132, 255},
{255, 0, 132},
{255, 170, 0},
{255, 0, 188},
{113, 255, 0},
{245, 0, 255},
{113, 0, 255},
{255, 188, 0},
{0, 113, 255},
{255, 0, 0},
{0, 56, 255},
{255, 0, 113},
{0, 255, 188},
{255, 0, 94},
{255, 0, 18},
{18, 255, 0},
{0, 255, 132},
{0, 188, 255},
{0, 245, 255},
{0, 169, 255},
{37, 255, 0},
{255, 0, 151},
{188, 0, 255},
{0, 255, 37},
{0, 255, 0},
{255, 0, 170},
{255, 0, 37},
{255, 75, 0},
{0, 0, 255},
{255, 207, 0},
{255, 0, 226},
{255, 245, 0},
{188, 255, 0},
{0, 255, 18},
{0, 255, 75},
{0, 255, 151},
{255, 56, 0},
{245, 255, 0}
};
class yolact
{
public:
yolact(float confThreshold, float nmsThreshold, const int keep_top_k = 200);
void detect(Mat& srcimg);
private:
const int target_size = 550;
const float MEANS[3] = { 123.68, 116.78, 103.94 };
const float STD[3] = { 58.40, 57.12, 57.38 };
float confidence_threshold;
float nms_threshold;
int keep_top_k;
const int conv_ws[5] = { 69, 35, 18, 9, 5 };
const int conv_hs[5] = { 69, 35, 18, 9, 5 };
const float aspect_ratios[3] = { 1.f, 0.5f, 2.f };
const float scales[5] = { 24.f, 48.f, 96.f, 192.f, 384.f };
const float var[4] = { 0.1f, 0.1f, 0.2f, 0.2f };
const int mask_h = 138;
const int mask_w = 138;
int num_priors;
float* priorbox;
Net net;
void normalize(Mat& img);
void sigmoid(Mat& out, int length);
};
yolact::yolact(float confThreshold, float nmsThreshold, const int keep_top_k)
{
this->confidence_threshold = confThreshold;
this->nms_threshold = nmsThreshold;
this->keep_top_k = keep_top_k;
this->net = readNet("yolact_base_54_800000.onnx");
this->num_priors = 0;
int p = 0;
for (p = 0; p < 5; p++)
{
this->num_priors += this->conv_ws[p] * this->conv_hs[p] * 3;
}
this->priorbox = new float[4 * this->num_priors];
////generate priorbox
float* pb = priorbox;
for (p = 0; p < 5; p++)
{
int conv_w = this->conv_ws[p];
int conv_h = this->conv_hs[p];
float scale = this->scales[p];
for (int i = 0; i < conv_h; i++)
{
for (int j = 0; j < conv_w; j++)
{
// +0.5 because priors are in center-size notation
float cx = (j + 0.5f) / conv_w;
float cy = (i + 0.5f) / conv_h;
for (int k = 0; k < 3; k++)
{
float ar = aspect_ratios[k];
ar = sqrt(ar);
float w = scale * ar / this->target_size;
float h = scale / ar / this->target_size;
// This is for backward compatability with a bug where I made everything square by accident
// cfg.backbone.use_square_anchors:
h = w;
pb[0] = cx;
pb[1] = cy;
pb[2] = w;
pb[3] = h;
pb += 4;
}
}
}
}
}
void yolact::normalize(Mat& img)
{
img.convertTo(img, CV_32F);
int i = 0, j = 0;
for (i = 0; i < img.rows; i++)
{
float* pdata = (float*)(img.data + i * img.step);
for (j = 0; j < img.cols; j++)
{
pdata[0] = (pdata[0] - this->MEANS[0]) / this->STD[0];
pdata[1] = (pdata[1] - this->MEANS[1]) / this->STD[1];
pdata[2] = (pdata[2] - this->MEANS[2]) / this->STD[2];
pdata += 3;
}
}
}
void yolact::sigmoid(Mat& out, int length)
{
float* pdata = (float*)(out.data);
int i = 0;
for (i = 0; i < length; i++)
{
pdata[i] = 1.0 / (1 + expf(-pdata[i]));
}
}
void yolact::detect(Mat& srcimg)
{
int img_w = srcimg.cols;
int img_h = srcimg.rows;
Mat img;
resize(srcimg, img, Size(this->target_size, this->target_size), INTER_LINEAR);
cvtColor(img, img, COLOR_BGR2RGB);
this->normalize(img);
Mat blob = blobFromImage(img);
this->net.setInput(blob);
vector<Mat> outs;
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
/////generate proposals
vector<int> classIds;
vector<float> confidences;
vector<Rect> boxes;
vector<int> maskIds;
const int num_class = outs[1].cols;
for (int i = 0; i < this->num_priors; i++)
{
Mat scores = outs[1].row(i).colRange(1, num_class);
Point classIdPoint;
double score;
// Get the value and location of the maximum score
minMaxLoc(scores, 0, &score, 0, &classIdPoint);
if (score > this->confidence_threshold)
{
const float* loc = (float*)outs[0].data + i * 4;
const float* pb = this->priorbox + i * 4;
float pb_cx = pb[0];
float pb_cy = pb[1];
float pb_w = pb[2];
float pb_h = pb[3];
float bbox_cx = var[0] * loc[0] * pb_w + pb_cx;
float bbox_cy = var[1] * loc[1] * pb_h + pb_cy;
float bbox_w = (float)(exp(var[2] * loc[2]) * pb_w);
float bbox_h = (float)(exp(var[3] * loc[3]) * pb_h);
float obj_x1 = bbox_cx - bbox_w * 0.5f;
float obj_y1 = bbox_cy - bbox_h * 0.5f;
float obj_x2 = bbox_cx + bbox_w * 0.5f;
float obj_y2 = bbox_cy + bbox_h * 0.5f;
// clip
obj_x1 = max(min(obj_x1 * img_w, (float)(img_w - 1)), 0.f);
obj_y1 = max(min(obj_y1 * img_h, (float)(img_h - 1)), 0.f);
obj_x2 = max(min(obj_x2 * img_w, (float)(img_w - 1)), 0.f);
obj_y2 = max(min(obj_y2 * img_h, (float)(img_h - 1)), 0.f);
classIds.push_back(classIdPoint.x);
confidences.push_back(score);
boxes.push_back(Rect((int)obj_x1, (int)obj_y1, (int)(obj_x2 - obj_x1 + 1), (int)(obj_y2 - obj_y1 + 1)));
maskIds.push_back(i);
}
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector<int> indices;
NMSBoxes(boxes, confidences, this->confidence_threshold, this->nms_threshold, indices, 1.f, this->keep_top_k);
for (size_t i = 0; i < indices.size(); ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
int xmax = box.x + box.width;
int ymax = box.y + box.height;
rectangle(srcimg, Point(box.x, box.y), Point(xmax, ymax), Scalar(0, 0, 255), 3);
//Get the label for the class name and its confidence
char text[256];
sprintf(text, "%s: %.2f", class_names[classIds[idx] + 1], confidences[idx]);
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(text, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
int ymin = max(box.y, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(srcimg, text, Point(box.x, ymin), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
Mat mask(this->mask_h, this->mask_w, CV_32FC1);
mask = cv::Scalar(0.f);
int channel = outs[2].cols;
int area = this->mask_h * this->mask_w;
float* coeff = (float*)outs[2].data + maskIds[idx] * channel;
float* pm = (float*)mask.data;
const float* pmaskmap = (float*)outs[3].data;
for (int j = 0; j < area; j++)
{
for (int p = 0; p < channel; p++)
{
pm[j] += pmaskmap[p] * coeff[p];
}
pmaskmap += channel;
}
this->sigmoid(mask, area);
Mat mask2;
resize(mask, mask2, Size(img_w, img_h));
// draw mask
for (int y = 0; y < img_h; y++)
{
const float* pmask = (float*)mask2.data + y * img_w;
uchar* p = srcimg.data + y * img_w * 3;
for (int x = 0; x < img_w; x++)
{
if (pmask[x] > 0.5)
{
p[0] = (uchar)(p[0] * 0.5 + colors[classIds[idx] + 1][0] * 0.5);
p[1] = (uchar)(p[1] * 0.5 + colors[classIds[idx] + 1][1] * 0.5);
p[2] = (uchar)(p[2] * 0.5 + colors[classIds[idx] + 1][2] * 0.5);
}
p += 3;
}
}
}
}
int main()
{
yolact yolactnet(0.5, 0.5);
string imgpath = "000000046804.jpg";
Mat srcimg = imread(imgpath);
yolactnet.detect(srcimg);
static const string kWinName = "Deep learning object detection in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, srcimg);
waitKey(0);
destroyAllWindows();
}