-
Notifications
You must be signed in to change notification settings - Fork 1
/
Video_Object_Tracking.py
65 lines (57 loc) · 2.32 KB
/
Video_Object_Tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -*- coding: utf-8 -*-
# This example shows how to use the correlation_tracker from the dlib Python
# library. This object lets you track the position of an object as it moves
# from frame to frame in a video sequence. To use it, you give the
# correlation_tracker the bounding box of the object you want to track in the
# current video frame. Then it will identify the location of the object in
# subsequent frames.
#
# In this particular example, we are going to run on the
# video sequence that comes with dlib, which can be found in the
# examples/video_frames folder. This video shows a juice box sitting on a table
# and someone is waving the camera around. The task is to track the position of
# the juice box as the camera moves around.
#
#
# COMPILING/INSTALLING THE DLIB PYTHON INTERFACE
# You can install dlib using the command:
# pip install dlib
#
# Alternatively, if you want to compile dlib yourself then go into the dlib
# root folder and run:
# python setup.py install
#
# Compiling dlib should work on any operating system so long as you have
# CMake installed. On Ubuntu, this can be done easily by running the
# command:
# sudo apt-get install cmake
#
# Also note that this example requires Numpy which can be installed
# via the command:
# pip install numpy
import os
import glob
import dlib
# Path to the video frames
video_folder = os.path.join("examples", "video_frames")
# Create the correlation tracker - the object needs to be initialized
# before it can be used
tracker = dlib.correlation_tracker()
win = dlib.image_window()
# We will track the frames as we load them off of disk
for k, f in enumerate(sorted(glob.glob(os.path.join(video_folder, "*.jpg")))):
print("Processing Frame {}".format(k))
img = dlib.load_rgb_image(f)
# We need to initialize the tracker on the first frame
if k == 0:
# Start a track on the juice box. If you look at the first frame you
# will see that the juice box is contained within the bounding
# box (74, 67, 112, 153).
tracker.start_track(img, dlib.rectangle(231, 134, 930, 630))
else:
# Else we just attempt to track from the previous frame
tracker.update(img)
win.clear_overlay()
win.set_image(img)
print (tracker.get_position())
win.add_overlay(tracker.get_position())