-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMPD_64qam_n_.m
189 lines (152 loc) · 4.97 KB
/
MPD_64qam_n_.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
function [out1,out2,out3,out4,out5] = MPD_64qam_n_(K,J,Z,N0v,s,t,Es,E_guiyi)
%行对应2K个数据 列对应16个符号的概率
D=0.33;
if t==1
sym_=[-1,+1]/E_guiyi;
p_cs=0.5;
cs=2;
elseif t==2
sym_=[-3:2:3]/E_guiyi;
p_cs=0.25;
cs=4;
elseif t==3
sym_=[-7:2:7,0]/E_guiyi;
p_cs=0.125;
cs=8;
else
sym_=[-15:2:15]/E_guiyi;
p_cs=0.0625;
cs=16;
end
pro=(p_cs)*ones(2*K,cs+1);%初始化 每一个符号的概率为1、16
pro(:,cs+1)=0;
L=zeros(2*K,cs);
paixu=zeros(2*K,8);%对于64qam而言
index=zeros(2*K,2);%对应取的概率的位置
index_=zeros(2*K,8);
L=zeros(2*K,cs);
for t=1% 迭代的循环
for i_=1:2*K%数据xi的循环
for j_=1:2*K%求均值方差的通项的循环
a(j_) =J(i_,j_) *(sym_*pro(j_,:)');%求xj得均值不包含xi的所有xi
b(j_)=(J(i_,j_).^2)*((sym_.^2)*pro(j_,:)'-(abs(sym_*pro(j_,:)'))^2);
%b(j_)=(J(i_,j_).^2)*(Es/2);%方差不更新
end
bb(:,i_,t)=b;
%求和
c(i_)= sum(a(:))-a(i_);
d(i_)= sum(b(:)) - b(i_) + N0v;
%到这里一次迭代中所要的消息已经更新完毕
%求每个符号的对数似然比
for n_=1:cs
% L_(i_,n_)=(2*J(i_,i_)*(Z(i_)-c(i_))*(sym_(n_)-sym_(1))+(J(i_,i_)^2)*(sym_(1)^2-sym_(n_)^2))/(2*d(i_));
L(i_,n_)=(J(i_,i_)*(sym_(n_)-sym_(1)))*(2*Z(i_)-2*c(i_)-J(i_,i_)*sym_(n_)-J(i_,i_)*sym_(1))/(2*d(i_));
% L(i_,n_)=(1-D)* L_(i_,n_)+D*L(i_,n_);
end
end
for i_c=1:2*K
for j_c=1:cs
if L(i_c,j_c)>709
L(i_c,:)=L(i_c,:).*0.5;
end
end
end
LL(:,:,t)=L;
%这部分只是计算出概率的部分
for k=1:2*K
for n=1:cs
pro_(k,n)=exp(L(k,n))/(sum(exp(L(k,:))));%更新的概率
pro(k,n)=(1-D).* pro_(k,n)+D.*pro(k,n);%加上阻尼因子
end
end
dd(:,t)=d;
pp(:,:,t) =pro;
end
for t=2:6% 迭代的循环取2个
for k_i=1:2*K
[paixu(k_i,:),index_(k_i,:)]=sort(pro(k_i,1:cs));%sort从小到大排序
index(k_i,:)=index_(k_i,7 :8);
end
for i_=1:2*K%数据xi的循环
for j_=1:2*K%求均值方差的通项的循环
a(j_) =J(i_,j_) *(sym_(index(j_,:))*pro(j_,index(j_,:))');%求xj得均值不包含xi的所有xi
b(j_)=(J(i_,j_).^2)*((sym_(index(j_,:)).^2)*pro(j_,index(j_,:))'-(abs(sym_(index(j_,:)))*pro(j_,index(j_,:))')^2);
%b(j_)=(J(i_,j_).^2)*(Es/2);%方差不更新
end
bb(:,i_,t)=b;
%求和
c(i_)= sum(a(:))-a(i_);
d(i_)= sum(b(:)) - b(i_) + N0v;
%到这里一次迭代中所要的消息已经更新完毕
%求每个符号的对数似然比
for n_=1:cs
% L_(i_,n_)=(2*J(i_,i_)*(Z(i_)-c(i_))*(sym_(n_)-sym_(1))+(J(i_,i_)^2)*(sym_(1)^2-sym_(n_)^2))/(2*d(i_));
L(i_,n_)=(J(i_,i_)*(sym_(n_)-sym_(1)))*(2*Z(i_)-2*c(i_)-J(i_,i_)*sym_(n_)-J(i_,i_)*sym_(1))/(2*d(i_));
% L(i_,n_)=(1-D)* L_(i_,n_)+D*L(i_,n_);
end
end
for i_c=1:2*K
for j_c=1:cs
if L(i_c,j_c)>709
L(i_c,:)=L(i_c,:).*0.5;
end
end
end
LL(:,:,t)=L;
%这部分只是计算出概率的部分
for k=1:2*K
for n=1:cs
pro_(k,n)=exp(L(k,n))/(sum(exp(L(k,:))));%更新的概率
pro(k,n)=(1-D).* pro_(k,n)+D.*pro(k,n);%加上阻尼因子
end
end
dd(:,t)=d;
pp(:,:,t) =pro;
end
for t=7:s% 迭代的循环取1个
for k_i=1:2*K
[paixu(k_i,:),index_(k_i,:)]=sort(pro(k_i,1:cs));%sort从小到大排序
index(k_i,1)=index_(k_i,8);
index(k_i,2)=9;
end
for i_=1:2*K%数据xi的循环
for j_=1:2*K%求均值方差的通项的循环
a(j_) =J(i_,j_) *(sym_(index(j_,:))*pro(j_,index(j_,:))');%求xj得均值不包含xi的所有xi
b(j_)=(J(i_,j_).^2)*((sym_(index(j_,:)).^2)*pro(j_,index(j_,:))'-(abs(sym_(index(j_,:)))*pro(j_,index(j_,:))')^2);
%b(j_)=(J(i_,j_).^2)*(Es/2);%方差不更新
end
bb(:,i_,t)=b;
%求和
c(i_)= sum(a(:))-a(i_);
d(i_)= sum(b(:)) - b(i_) + N0v;
%到这里一次迭代中所要的消息已经更新完毕
%求每个符号的对数似然比
for n_=1:cs
% L_(i_,n_)=(2*J(i_,i_)*(Z(i_)-c(i_))*(sym_(n_)-sym_(1))+(J(i_,i_)^2)*(sym_(1)^2-sym_(n_)^2))/(2*d(i_));
L(i_,n_)=(J(i_,i_)*(sym_(n_)-sym_(1)))*(2*Z(i_)-2*c(i_)-J(i_,i_)*sym_(n_)-J(i_,i_)*sym_(1))/(2*d(i_));
% L(i_,n_)=(1-D)* L_(i_,n_)+D*L(i_,n_);
end
end
for i_c=1:2*K
for j_c=1:cs
if L(i_c,j_c)>709
L(i_c,:)=L(i_c,:).*0.5;
end
end
end
LL(:,:,t)=L;
%这部分只是计算出概率的部分
for k=1:2*K
for n=1:cs
pro_(k,n)=exp(L(k,n))/(sum(exp(L(k,:))));%更新的概率
pro(k,n)=(1-D).* pro_(k,n)+D.*pro(k,n);%加上阻尼因子
end
end
dd(:,t)=d;
pp(:,:,t) =pro;
end
out1=L;
out2=pp;
out3=dd;
out4=bb;
out5=LL;