-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathevaluate.py
72 lines (66 loc) · 2.85 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import fire
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.utils.data import DataLoader
from models.pointnet2_cls import pointnet2_cls_ssg, pointnet2_cls_msg
from models.pointnet2_seg import pointnet2_seg_ssg
from data.ModelNet40 import ModelNet40
from data.ShapeNet import ShapeNet
from utils.IoU import cal_accuracy_iou
def evaluate_cls(model_id, data_root, checkpoint, npoints, dims=6, nclasses=40):
print('Loading..')
Models = {
'pointnet2_cls_ssg': pointnet2_cls_ssg,
'pointnet2_cls_msg': pointnet2_cls_msg
}
Model = Models[model_id]
modelnet40_test = ModelNet40(data_root=data_root, split='test', npoints=npoints)
test_loader = DataLoader(dataset=modelnet40_test,
batch_size=64, shuffle=False,
num_workers=1)
device = torch.device('cuda')
model = Model(dims, nclasses)
model = model.to(device)
model.load_state_dict(torch.load(checkpoint))
model.eval()
print('Loading {} completed'.format(checkpoint))
print("Dataset: {}, Evaluating..".format(len(modelnet40_test)))
total_correct, total_seen = 0, 0
for data, labels in tqdm(test_loader):
labels = labels.to(device)
xyz, points = data[:, :, :3], data[:, :, 3:]
with torch.no_grad():
pred = model(xyz.to(device), points.to(device))
pred = torch.max(pred, dim=-1)[1]
total_correct += torch.sum(pred == labels)
total_seen += xyz.shape[0]
print("Evaluating completed!")
print('Corr: {}, Seen: {}, Acc: {:.4f}'.format(total_correct, total_seen, total_correct / float(total_seen)))
def evaluate_seg(data_root, checkpoint, npoints=2048, dims=6, nclasses=50):
print('Loading..')
shapenet_test = ShapeNet(data_root=data_root, split='test', npoints=npoints)
test_loader = DataLoader(dataset=shapenet_test, batch_size=64, shuffle=False, num_workers=4)
device = torch.device('cuda')
model = pointnet2_seg_ssg(dims, nclasses)
model = model.to(device)
model.load_state_dict(torch.load(checkpoint))
model.eval()
print('Loading {} completed'.format(checkpoint))
print("Dataset: {}, Evaluating..".format(len(shapenet_test)))
preds, labels = [], []
for data, label in tqdm(test_loader):
labels.append(label)
xyz, points = data[:, :, :3], data[:, :, 3:]
with torch.no_grad():
pred = model(xyz.to(device), points.to(device))
pred = torch.max(pred, dim=1)[1].cpu().detach().numpy()
preds.append(pred)
iou, acc = cal_accuracy_iou(np.concatenate(preds, axis=0), np.concatenate(labels, axis=0), shapenet_test.seg_classes)
print("Weighed Acc: {:.4f}".format(acc))
print("Weighed Average IoU: {:.4f}".format(iou))
print('='*40)
print("Evaluating completed !")
if __name__ == '__main__':
fire.Fire()