diff --git a/gpax/priors/priors.py b/gpax/priors/priors.py index fb965cc..f1c31d9 100644 --- a/gpax/priors/priors.py +++ b/gpax/priors/priors.py @@ -78,7 +78,7 @@ def normal_dist(loc: float = None, scale: float = None Assign custom prior to kernel lengthscale during GP model initialization - >>> model = gpax.ExactGP(input_dim, kernel, lengthscale_prior_dist=gpax.utils.normal_dist(5, 1)) + >>> model = gpax.ExactGP(input_dim, kernel, lengthscale_prior_dist=gpax.priors.normal_dist(5, 1)) Train as usual @@ -99,7 +99,7 @@ def lognormal_dist(loc: float = None, scale: float = None) -> numpyro.distributi Assign custom prior to kernel lengthscale during GP model initialization - >>> model = gpax.ExactGP(input_dim, kernel, lengthscale_prior_dist=gpax.utils.lognormal_dist(0, 0.1)) + >>> model = gpax.ExactGP(input_dim, kernel, lengthscale_prior_dist=gpax.priors.lognormal_dist(0, 0.1)) Train as usual @@ -120,7 +120,7 @@ def halfnormal_dist(scale: float = None) -> numpyro.distributions.Distribution: Assign custom prior to noise variance during GP model initialization - >>> model = gpax.ExactGP(input_dim, kernel, noise_prior_dist=gpax.utils.halfnormal_dist(0.1)) + >>> model = gpax.ExactGP(input_dim, kernel, noise_prior_dist=gpax.priors.halfnormal_dist(0.1)) Train as usual @@ -144,7 +144,7 @@ def gamma_dist(c: float = None, Assign custom prior to kernel lengthscale during GP model initialization - >>> model = gpax.ExactGP(input_dm, kernel, lengthscale_prior_dist=gpax.utils.gamma_dist(2, 5)) + >>> model = gpax.ExactGP(input_dm, kernel, lengthscale_prior_dist=gpax.priors.gamma_dist(2, 5)) Train as usual