forked from azadis/MC-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_video.py
48 lines (42 loc) · 1.58 KB
/
test_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import time
import os
from options.test_options import TestOptions
import numpy as np
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from pdb import set_trace as st
from util import html
opt = TestOptions().parse() # set CUDA_VISIBLE_DEVICES before import torch
opt.nThreads = 1 # test code only supports nThreads=1
opt.batchSize = 1 #test code only supports batchSize=1
opt.serial_batches = True # no shuffle
opt.stack = True
opt.use_dropout = False
opt.use_dropout1 = False
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
visualizer = Visualizer(opt)
epoch_list = list(range(26))+list(np.arange(26,101,2))+list(np.arange(101,int(opt.which_epoch1)+1,20))
for epoch in epoch_list:
opt.which_epoch1 = epoch
model = create_model(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch+'+'+str(epoch)))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch+'+'+str(epoch)))
# test
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
img_path = model.get_image_paths()
print('process image... %s' % img_path)
visualizer.save_images(webpage, visuals, img_path)
webpage.save()
video_path = os.path.join(opt.results_dir, opt.name, '%s' % (opt.phase))
print "save to:%s"%video_path
if not os.path.isdir(video_path):
os.mkdir(video_path)
visualizer.save_video(video_path)