forked from Chenglu0426/FairGraphFL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetupGC.py
296 lines (242 loc) · 13.7 KB
/
setupGC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import random
from random import choices
import numpy as np
import pandas as pd
import torch
from torch_geometric.datasets import TUDataset
from torch_geometric.data import DataLoader
from torch_geometric.transforms import OneHotDegree
from torch_geometric.datasets import UPFD
from models import GIN, serverGIN, ogbGIN
from server import Server
from client import Client_GC, Motif_graph
from utils import get_maxDegree, get_stats, split_data, get_numGraphLabels
from torch_geometric.utils import to_networkx
from torch_geometric.transforms import ToUndirected
from sklearn.cluster import KMeans
from ogb.graphproppred import PygGraphPropPredDataset, Evaluator
class GenData(object):
def __init__(self, g_list, node_labels, graph_labels):
self.g_list = g_list
self.node_labels = node_labels
self.graph_labels = graph_labels
def _randChunk(graphs, num_client, overlap, seed=None):
random.seed(seed)
np.random.seed(seed)
totalNum = len(graphs)
minSize = min(50, int(totalNum/num_client))
graphs_chunks = []
if not overlap:
for i in range(num_client):
graphs_chunks.append(graphs[i*minSize:(i+1)*minSize])
for g in graphs[num_client*minSize:]:
idx_chunk = np.random.randint(low=0, high=num_client, size=1)[0]
graphs_chunks[idx_chunk].append(g)
else:
sizes = np.random.randint(low=50, high=150, size=num_client)
for s in sizes:
graphs_chunks.append(choices(graphs, k=s))
return graphs_chunks
def fakechunk(graphs, num_client, overlap, seed=None):
random.seed(seed)
np.random.seed(seed)
totalNum = len(graphs)
minSize = min(50, int(totalNum/num_client))
k = num_client
features = []
graphs_chunks = [[]for _ in range(k)]
for i, graph in enumerate(graphs):
feature = graph.x[0]
if i == 0:
features = feature.unsqueeze(0)
else:
features = torch.cat((features, feature.unsqueeze(0)), dim=0)
features = features.cpu().numpy()
k = num_client
kmeans = KMeans(n_clusters = k)
kmeans.fit(features)
labels = kmeans.labels_
for i, label in enumerate(labels):
graphs_chunks[label].append(graphs[i])
return graphs_chunks
def add_zeros(data):
data.x = torch.zeros(data.num_nodes, dtype=torch.long)
return data
def prepareData_oneDS(datapath, data, num_client, batchSize, convert_x=False, seed=None, overlap=False, aug=False):
if data == "COLLAB":
tudataset = TUDataset(f"{datapath}/TUDataset", data, pre_transform=OneHotDegree(491, cat=False))
elif data == "IMDB-BINARY":
tudataset = TUDataset(f"{datapath}/TUDataset", data, pre_transform=OneHotDegree(135, cat=False))
elif data == "IMDB-MULTI":
tudataset = TUDataset(f"{datapath}/TUDataset", data, pre_transform=OneHotDegree(88, cat=False))
elif data == 'fakenews':
train_set = UPFD(f"{datapath}/UPFD", 'gossipcop', 'content', 'train', ToUndirected())
test_set = UPFD(f"{datapath}/UPFD", 'gossipcop', 'content', 'test', ToUndirected())
val_set = UPFD(f"{datapath}/UPFD", 'gossipcop', 'content', 'val', ToUndirected())
elif data == 'ogb':
tudataset = PygGraphPropPredDataset(name = 'ogbg-ppa', transform=add_zeros)
# print(tudataset[0])
# split_idx = tudataset.get_idx_split()
# ogd_train = tudataset[split_idx["train"]]
# ogd_val = tudataset[split_idx["valid"]]
# ogd_test = tudataset[split_idx["test"]]
# graphs_train = [x for x in ogd_train]
# graphs_val = [x for x in ogd_val]
# graphs_test = [x for x in ogd_test]
# num_node_features = graphs_train[0].num_node_features
# ogdtrain_graph_chunks = _randChunk(graphs_train, num_client, overlap, seed=seed)
# ogdval_graph_chunks = _randChunk(graphs_val, num_client, overlap, seed=seed)
# ogdtest_graph_chunks = _randChunk(graphs_test, num_client, overlap, seed=seed)
# graphs_chunks = (ogdtrain_graph_chunks, ogdval_graph_chunks, ogdtest_graph_chunks)
# for idx, chunks in enumerate(graphs_chunks):
# ds = f'{idx}-{data}'
# ds_tvt = chunks
# ds_train, ds_val, ds_test = chunks[0], chunks[1], chunks[2]
# dataloader_train = DataLoader(ds_train, batch_size=batchSize, shuffle=True)
# dataloader_val = DataLoader(ds_val, batch_size=batchSize, shuffle=False)
# dataloader_test = DataLoader(ds_test, batch_size=batchSize, shuffle=False)
# num_graph_labels = get_numGraphLabels(ds_train)
# splitedData = {}
# df = pd.DataFrame()
# splitedData[ds] = ({'train': dataloader_train, 'val': dataloader_val, 'test': dataloader_test},
# num_node_features, num_graph_labels, len(ds_train), ds_train)
# df = get_stats(df, ds, ds_train, graphs_val=ds_val, graphs_test=ds_test)
# return splitedData, df
else:
tudataset = TUDataset(f"{datapath}/TUDataset", data)
if convert_x:
maxdegree = get_maxDegree(tudataset)
tudataset = TUDataset(f"{datapath}/TUDataset", data, transform=OneHotDegree(maxdegree, cat=False))
if data != 'fakenews':
graphs = [x for x in tudataset]
print(" **", data, len(graphs))
else:
graphs = [x for x in train_set] + [x for x in test_set] + [x for x in val_set]
print(" **", data, len(graphs))
# print(graphs[0].is_directed())
if data != 'fakenews':
graphs_chunks = _randChunk(graphs, num_client, overlap, seed=seed)
else:
graphs_chunks = fakechunk(graphs, num_client, overlap, seed=seed)
splitedData = {}
df = pd.DataFrame()
num_node_features = graphs[0].num_node_features
#print(graphs_chunks)
if aug:
aug_rate = []
for i in range(num_client):
aug_rate.append(random.uniform(0, 1))
print(aug_rate)
for idx, chunks in enumerate(graphs_chunks):
print(len(chunks))
ds = f'{idx}-{data}'
ds_tvt = chunks
ds_train, ds_vt = split_data(ds_tvt, train=0.8, test=0.2, shuffle=True, seed=seed)
if aug:
for graph in ds_train:
node_num, _ = graph.x.size()
_, edge_num = graph.edge_index.size()
permute_num = int(edge_num * aug_rate[idx])
edge_index = graph.edge_index.numpy()
idx_add = np.random.choice(node_num, (2, permute_num))
edge_index = np.concatenate((edge_index[:, np.random.choice(edge_num, (edge_num - permute_num), replace=False)], idx_add), axis=1)
graph.edge_index = torch.tensor(edge_index)
ds_val, ds_test = split_data(ds_vt, train=0.5, test=0.5, shuffle=True, seed=seed)
dataloader_train = DataLoader(ds_train, batch_size=batchSize, shuffle=True)
dataloader_val = DataLoader(ds_val, batch_size=batchSize, shuffle=True)
dataloader_test = DataLoader(ds_test, batch_size=batchSize, shuffle=True)
num_graph_labels = get_numGraphLabels(ds_train)
splitedData[ds] = ({'train': dataloader_train, 'val': dataloader_val, 'test': dataloader_test},
num_node_features, num_graph_labels, len(ds_train), ds_train)
df = get_stats(df, ds, ds_train, graphs_val=ds_val, graphs_test=ds_test)
return splitedData, df
def prepareData_multiDS(datapath, group='small', batchSize=32, convert_x=False, seed=None):
assert group in ['molecules', 'molecules_tiny', 'small', 'mix', "mix_tiny", "biochem", "biochem_tiny", 'fakenews']
if group == 'molecules' or group == 'molecules_tiny':
datasets = ["MUTAG", "BZR", "COX2", "DHFR", "PTC_MR", "AIDS", "NCI1"]
if group == 'small':
datasets = ["MUTAG", "BZR", "COX2", "DHFR", "PTC_MR", "AIDS", "NCI1", # small molecules
"ENZYMES", "DD", "PROTEINS"] # bioinformatics
# datasets = ["MUTAG", # small molecules
# 'ENZYMES'] # bioinformatics
if group == 'mix' or group == 'mix_tiny':
datasets = ["MUTAG", "BZR", "COX2", "DHFR", "PTC_MR", "AIDS", "NCI1", # small molecules
"ENZYMES", "DD", "PROTEINS", # bioinformatics
"COLLAB", "IMDB-BINARY", "IMDB-MULTI"] # social networks
if group == 'biochem' or group == 'biochem_tiny':
datasets = ["ENZYMES", "DD", "PROTEINS"]
if group == 'fakenews':
datasets = ['politifact', 'gossipcop'] # bioinformatics
splitedData = {}
df = pd.DataFrame()
for data in datasets:
if data != 'politifact' and data != 'gossipcop':
# if data == "COLLAB":
# tudataset = TUDataset(f"{datapath}/TUDataset", data, pre_transform=OneHotDegree(491, cat=False))
# elif data == "IMDB-BINARY":
# tudataset = TUDataset(f"{datapath}/TUDataset", data, pre_transform=OneHotDegree(135, cat=False))
# elif data == "IMDB-MULTI":
# tudataset = TUDataset(f"{datapath}/TUDataset", data, pre_transform=OneHotDegree(88, cat=False))
# else:
# tudataset = TUDataset(f"{datapath}/TUDataset", data)
# if convert_x:
# maxdegree = get_maxDegree(tudataset)
# tudataset = TUDataset(f"{datapath}/TUDataset", data, transform=OneHotDegree(maxdegree, cat=False))
# graphs = [x for x in tudataset]
# print(" **", data, len(graphs))
# graphs_train, graphs_valtest = split_data(graphs, test=0.2, shuffle=True, seed=seed)
# graphs_val, graphs_test = split_data(graphs_valtest, train=0.5, test=0.5, shuffle=True, seed=seed)
# if group.endswith('tiny'):
# graphs, _ = split_data(graphs, train=150, shuffle=True, seed=seed)
# graphs_train, graphs_valtest = split_data(graphs, test=0.2, shuffle=True, seed=seed)
# graphs_val, graphs_test = split_data(graphs_valtest, train=0.5, test=0.5, shuffle=True, seed=seed)
# num_node_features = graphs[0].num_node_features
# num_graph_labels = get_numGraphLabels(graphs_train)
# dataloader_train = DataLoader(graphs_train, batch_size=batchSize, shuffle=True)
# dataloader_val = DataLoader(graphs_val, batch_size=batchSize, shuffle=True)
# dataloader_test = DataLoader(graphs_test, batch_size=batchSize, shuffle=True)
# splitedData[data] = ({'train': dataloader_train, 'val': dataloader_val, 'test': dataloader_test},
# num_node_features, num_graph_labels, len(graphs_train))
# df = get_stats(df, data, graphs_train, graphs_val=graphs_val, graphs_test=graphs_test)
pass
if data == 'politifact' or data == 'gossipcop':
train_dataset = UPFD(f"{datapath}/UPFD", data, 'content', 'train', ToUndirected())
graphs_train = [x for x in train_dataset]
print(" **", data, len(graphs_train))
num_node_features = graphs_train[0].num_node_features
num_graph_labels = get_numGraphLabels(train_dataset)
val_dataset = UPFD(f'{datapath}/UPFD', data, 'content', 'val', ToUndirected())
graphs_val = [x for x in val_dataset]
test_dataset = UPFD(f'{datapath}/UPFD', data, 'content', 'test', ToUndirected())
graphs_test = [x for x in test_dataset]
dataloader_train = DataLoader(train_dataset, batch_size=128, shuffle=True)
dataloader_val = DataLoader(val_dataset, batch_size=128, shuffle=False)
dataloader_test = DataLoader(test_dataset, batch_size=128, shuffle=False)
splitedData[data] = ({'train': dataloader_train, 'val': dataloader_val, 'test': dataloader_test},
num_node_features, num_graph_labels, len(graphs_train), graphs_train)
df = get_stats(df, data, graphs_train, graphs_val = graphs_val, graphs_test = graphs_test)
return splitedData, df
def setup_devices(splitedData, args):
idx_clients = {}
clients = []
for idx, ds in enumerate(splitedData.keys()):
idx_clients[idx] = ds
dataloaders, num_node_features, num_graph_labels, train_size, graphs_train = splitedData[ds]
cmodel_gc = GIN(num_node_features, args.hidden, num_graph_labels, args.nlayer, args.dropout)
if args.data_group == 'fakenews':
cmodel_gc = newsModel(num_node_features, args.hidden, num_graph_labels, args.nlayer, args.dropout)
if args.data_group == 'ogb':
cmodel_gc = ogbGIN(num_graph_labels, args.hidden, args.nlayer, args.dropout)
# optimizer = torch.optim.Adam(cmodel_gc.parameters(), lr=args.lr, weight_decay=args.weight_decay)
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, cmodel_gc.parameters()), lr=args.lr, weight_decay=args.weight_decay)
clients.append(Client_GC(cmodel_gc, idx, ds, train_size, graphs_train, dataloaders, optimizer, args))
smodel = serverGIN(nlayer=args.nlayer, nhid=args.hidden)
if args.data_group == 'fakenews':
smodel = newsModel(num_node_features, args.hidden, num_graph_labels, args.nlayer, args.dropout)
smodel = serverNewsModel(num_node_features, args.hidden)
if args.data_group == 'ogb':
smodel = ogbGIN(num_graph_labels, args.hidden, args.nlayer, args.dropout)
# smodel = newsModel(num_node_features, args.hidden, num_graph_labels, args.nlayer, args.dropout)
# smodel = GIN(num_node_features, args.hidden, num_graph_labels, args.nlayer, args.dropout)
server = Server(smodel, args.device)
return clients, server, idx_clients