-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfinetune.py
135 lines (108 loc) · 4.19 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
from random import choice
from datasets import Dataset, DatasetDict
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainer, Seq2SeqTrainingArguments
import numpy as np
from rouge import Rouge
import os
from datasets import load_dataset, load_metric
import json
os.environ["WANDB_DISABLED"]="true"
metric = load_metric("rouge")
train_json_path = "sum/train.json"
valid_json_path = "sum/valid.json"
tokenizer_path="your_new_tokenizer_path"
model_path="google-t5/t5-base"
output_dir="save_model_path"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
print(len(tokenizer))
if model.config.vocab_size !=len(tokenizer) :
print("Token embeddings size is not len(tokenizer), resizing.")
model.resize_token_embeddings(len(tokenizer))
else:
print("Token embeddings size is already len(tokenizer), no need to adjust.")
# Function to load and prepare datasets
def load_dataset(train_json_path, valid_json_path):
# Load datasets from JSON
with open(train_json_path, 'r', encoding='utf-8') as file:
train_data = json.load(file)
train_dataset = Dataset.from_dict({'source': [item['source'] for item in train_data],
'target': [item['target'] for item in train_data]})
with open(valid_json_path, 'r', encoding='utf-8') as file:
valid_data = json.load(file)
valid_dataset = Dataset.from_dict({'source': [item['source'] for item in valid_data],
'target': [item['target'] for item in valid_data]})
# Combine into a DatasetDict
dataset_dict = DatasetDict({
'train': train_dataset,
'valid': valid_dataset
})
return dataset_dict
# Load and prepare the dataset
dataset_dict = load_dataset(train_json_path, valid_json_path)
print(dataset_dict)
# Function to preprocess the datasets
def process_func(examples):
inputs = examples['source']
targets = examples['target']
model_inputs = tokenizer(inputs)
labels = tokenizer(targets)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
# Apply preprocessing
dataset_all = dataset_dict.map(process_func, batched=True)
print(dataset_all)
# Training arguments
batch_size = 8
args = Seq2SeqTrainingArguments(
output_dir=output_dir,
evaluation_strategy="steps",
eval_steps=5000,
logging_strategy="steps",
logging_steps=100,
save_strategy="steps",
save_steps=5000,
learning_rate=4e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
weight_decay=0.01,
save_total_limit=3,
num_train_epochs=50,
predict_with_generate=True,
fp16=False,
load_best_model_at_end=True,
metric_for_best_model="rouge1",
)
# Function to compute metrics for evaluation
def compute_metrics(eval_pred):
predictions, labels = eval_pred
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Rouge expects a newline after each sentence
decoded_preds = [pred.strip() for pred in decoded_preds]
decoded_labels = [label.strip() for label in decoded_labels]
# Compute ROUGE scores
result = metric.compute(predictions=decoded_preds, references=decoded_labels,
use_stemmer=True)
# Extract ROUGE f1 scores
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
# Add mean generated length to metrics
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id)
for pred in predictions]
result["gen_len"] = np.mean(prediction_lens)
return {k: round(v, 4) for k, v in result.items()}
trainer = Seq2SeqTrainer(
model=model,
args=args,
train_dataset=dataset_all['train'],
eval_dataset=dataset_all['valid'],
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer),
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
# Start training
trainer.train()
trainer.save_model()