-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtransform.py
297 lines (256 loc) · 11.3 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""
This file was initially developed by the project at https://github.com/vandijklab/cell2sentence-ft.
Many thanks for their contributions to this field. It adheres to the Attribution-NonCommercial-ShareAlike
4.0 International License.
If you use this file, please cite the papers "Levine et al., Cell2Sentence: Teaching Large Language
Models the Language of Biology. 2023 (https://www.biorxiv.org/content/10.1101/2023.09.11.557287v3)" and
"Rahul M Dhodapkar. Representing cells as sentences enables natural-language processing for single-cell
transcriptomics. 2022 (https://www.biorxiv.org/content/10.1101/2022.09.18.508438)."
"""
import os
import argparse
from pathlib import Path
import anndata
import numpy as np
import pandas as pd
import plotnine as pn
import scanpy as sc
import sklearn.linear_model as lm
from datasets import Dataset, load_dataset, concatenate_datasets
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import r2_score
from sklearn.utils import shuffle
from tqdm import tqdm
import sys
from src import utils
ROW_SUM = 10000
def normalize_and_rank_transform(data_matrix_X, normalize=True):
"""
Helper function which accepts a data matrix, optionally row-normalizes it,
and calculated a rank transformation of the data.
Args:
data_matrix_X: numpy matrix of shape [num_cells, num_genes]
normalize: boolean flag for whether to normalize data
Returns:
data_matrix_X: normalized data matrix
rank_matrix_X: matrix of rank values for each cell, shame shape as data_matrix_X
"""
if normalize:
normalized_data_matrix_X = (
np.diag(ROW_SUM / np.ravel(np.sum(data_matrix_X, axis=1))) @ data_matrix_X
)
data_matrix_X = np.asarray(normalized_data_matrix_X)
rank_matrix_X = np.zeros(shape=data_matrix_X.shape)
for i in tqdm(range(data_matrix_X.shape[0])):
cols = np.ravel(range(data_matrix_X.shape[1]))
vals = np.ravel(data_matrix_X[i, :])
cols, vals = shuffle(cols, vals)
ranks = cols[np.argsort(-vals, kind="stable")]
for j in range(len(ranks)):
rank_matrix_X[i, ranks[j]] = j
return data_matrix_X, rank_matrix_X
def evaluate_transformation(df, plotting_sample_size=10000):
"""
Helper function which takes as input a pandas DataFrame of expression values and
ranks, and fits a linear regression model to predict back expression value from
log rank.
Plots are created to show the relationship between log rank and log expression,
as well as the performance of expression reconstruction by the linear model.
Metrics for expression reconstruction, as well as the parameters of the linear
model are saved in a CSV file.
Args:
df: pandas DataFrame with keys: 'preprocessed_transcript_count,
'preprocessed_rank', 'log_preprocessed_transcript_count',
and 'log_preprocessed_rank'
plotting_sample_size: how many values to sample for plotting
"""
eval_output_dir=Path("Output_directory_filepath/eval")
eval_output_dir.mkdir(exist_ok=True, parents=True)
# (1) Fit linear regression between log rank (x-axis) and log expression (y-axis)
x_axis_name = "log_preprocessed_rank"
y_axis_name = "log_preprocessed_transcript_count"
x = np.array(df.loc[df[x_axis_name] < utils.BASE10_THRESHOLD, x_axis_name]).reshape(
-1, 1
)
y = df.loc[df[x_axis_name] < utils.BASE10_THRESHOLD, y_axis_name]
reg = lm.LinearRegression().fit(x, y)
# Plot relationship
plot = (
pn.ggplot(
df.sample(plotting_sample_size),
pn.aes(x="log_preprocessed_rank", y="log_preprocessed_transcript_count"),
)
+ pn.geom_abline(slope=reg.coef_, intercept=reg.intercept_, color="red")
+ pn.geom_point(color="blue", size=0.5)
+ pn.labs(
x="Gene Log Rank",
y="Gene Log Expression",
title="Log Rank vs Log Expression",
)
)
plot.save(os.path.join(eval_output_dir, "plot_log_rank_vs_log_expr.png"), dpi=300)
# (2) Reconstruct expression from log rank, calculate reconstruction performance metrics
rank_reconstructed_X = reg.predict(
np.array(df["log_preprocessed_rank"]).reshape(-1, 1)
)
r_squared_score = r2_score(
np.asarray(df["log_preprocessed_transcript_count"]),
np.asarray(rank_reconstructed_X),
)
pearson_r_score = pearsonr(
np.asarray(df["log_preprocessed_transcript_count"]),
np.asarray(rank_reconstructed_X),
)
spearman_r_score = spearmanr(
np.asarray(df["log_preprocessed_transcript_count"]),
np.asarray(rank_reconstructed_X),
)
reconstructed_expr_values_df = pd.DataFrame(
{
"Ground Truth Expression": df["log_preprocessed_transcript_count"],
"Reconstructed Expression from Log Rank": rank_reconstructed_X,
}
)
plot = (
pn.ggplot(
reconstructed_expr_values_df.sample(plotting_sample_size),
pn.aes(
x="Ground Truth Expression", y="Reconstructed Expression from Log Rank"
),
)
+ pn.geom_point(color="blue", size=0.5)
+ pn.geom_abline(slope=1, intercept=0, color="red")
+ pn.labs(
x="Ground Truth Expression",
y="Reconstructed Expression from Log Rank",
title="Ground Truth Expression vs Reconstruction from Rank",
)
)
plot.save(
os.path.join(
eval_output_dir, "plot_gt_expr_vs_reconstructed_expr_from_rank.png"
),
dpi=300,
)
# 3. Create results dataframe and return
metrics_df = pd.DataFrame(
{
"threshold": [utils.BASE10_THRESHOLD],
"slope": [reg.coef_.item()],
"intercept": [reg.intercept_.item()],
"R^2": [r_squared_score.item()],
"Pearson_R_statistic": [pearson_r_score.statistic.item()],
"Pearson_R_p_value": [pearson_r_score.pvalue.item()],
"Spearman_R_statistic": [spearman_r_score.statistic.item()],
"Spearman_R_p_value": [spearman_r_score.pvalue.item()],
}
)
metrics_df.to_csv(
os.path.join(eval_output_dir, "transformation_metrics_and_parameters.csv")
)
def main(data_filepath: Path, output_dir: Path):
"""Apply preprocessing steps and transform to cell sentences.
Preprocessing follows https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html.
"""
print(f"Loading data from {data_filepath}.")
adata = anndata.read_h5ad(data_filepath)
# reach for raw transcript counts in the .raw attribute
if hasattr(adata, "raw") and adata.raw is not None:
adata.X = adata.raw.X
print(f"Done loading data for {len(adata)} cells.")
adata.var["feature_name"]=adata.var["features"].copy().str.upper()
adata.var["feature_name"] = adata.var["feature_name"].astype(str)
duplicates = adata.var["feature_name"].duplicated(keep=False)
adata.var.loc[duplicates, "feature_name"] = (
adata.var.loc[duplicates, "feature_name"]
+ '_'
+ adata.var.loc[duplicates, "feature_name"].groupby(adata.var["feature_name"]).cumcount().add(1).astype(str)
)
adata.var["ensembl_ids"] = adata.var.index
adata.var_names = adata.var["feature_name"]
adata.var_names_make_unique(join="_")
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)
# annotate the group of mitochondrial genes as 'mt'
adata.var["mt"] = adata.var_names.str.startswith("MT-")
sc.pp.calculate_qc_metrics(
adata, qc_vars=["mt"], percent_top=None, log1p=False, inplace=True
)
adata = adata[adata.obs.n_genes_by_counts < 2500, :]
adata = adata[adata.obs.pct_counts_mt < 200, :]
print(f"Done filtering cells, remaining data of shape {adata.shape}.")
raw_X = np.copy(adata.X.toarray())
norm_X, rank_norm_X = normalize_and_rank_transform(
np.copy(adata.X.todense()), normalize=True
)
# update adata object with normalized expression
adata.X = np.log10(1 + norm_X)
# create dataframe of ranks and expression values for plotting
expr_and_rank_df = pd.DataFrame(
{
"raw_transcript_count": np.ravel(raw_X),
"preprocessed_transcript_count": np.ravel(norm_X),
"preprocessed_rank": np.ravel(rank_norm_X),
"log_preprocessed_transcript_count": np.log10(1 + np.ravel(norm_X)),
"log_preprocessed_rank": np.log10(1 + np.ravel(rank_norm_X)),
}
)
# remove 0 expression entries in the cellxgene matrix
expr_and_rank_df = expr_and_rank_df[expr_and_rank_df["raw_transcript_count"] != 0]
print(f"Done normalizing data, {len(expr_and_rank_df)} data points remaining.")
# compute metrics for transformation to cells and back
evaluate_transformation(df=expr_and_rank_df, plotting_sample_size=10000)
preprocessed_output_filepath = data_filepath.parent / (
data_filepath.stem + data_filepath.suffix.replace(".h5ad", "_preprocessed.h5ad")
)
print(f"Saving preprocessed transcript counts to {preprocessed_output_filepath}.")
del adata.raw
adata.write_h5ad(preprocessed_output_filepath)
# convert the adata into ranked sequences of gene names ("cell sentences")
csdata = utils.csdata_from_adata(adata)
# make text files containing the cell sentences
txt_output_dir = output_dir / "cell_sentences"
txt_output_dir.mkdir(exist_ok=True, parents=True)
utils.xlm_prepare_outpath(csdata, txt_output_dir, species_tag="human")
print(f"Done writing cell sentences to file.")
# make arrow-formatted dataset compatible with HuggingFace's datasets
hf_output_dir = output_dir / "cell_sentences_hf"
hf_output_dir.mkdir(exist_ok=True, parents=True)
data_splits = ["train", "valid", "test"]
data_files = {
data_split: str(txt_output_dir / f"{data_split}_human.txt")
for data_split in data_splits
}
dataset = load_dataset("text", data_files=data_files)
# load cell type labels if available with transcript counts
for data_split in data_splits:
dataset[data_split] = dataset[data_split].rename_column("text", "input_ids")
# retrieve split chunk from preprocessed transcript counts
dataset_split_sample_indices = np.load(
txt_output_dir / f"{data_split}_partition_indices.npy"
)
adata_split = adata[dataset_split_sample_indices, :].copy()
if "cell_type" in adata_split.obs.columns:
cell_type_labels = {"cell_type": adata_split.obs["cell_type"].tolist()}
cell_type_dataset = Dataset.from_dict(cell_type_labels)
dataset[data_split] = concatenate_datasets(
[dataset[data_split], cell_type_dataset], axis=1
)
dataset.save_to_disk(hf_output_dir)
print(f"Done transforming data to cell sentences.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_filepath",
type=Path,
help="Input data filepath.",
default='SHARE-seq_mouse_skin_dataset.h5ad',
)
parser.add_argument(
"--output_dir",
type=Path,
help="Output directory filepath.",
default='Output_directory_filepath',
)
args = parser.parse_args()
main(args.data_filepath, args.output_dir)