forked from bubasik/cpuminer-opt-yespower
-
Notifications
You must be signed in to change notification settings - Fork 0
/
avxdefs.h
1261 lines (1009 loc) · 40.5 KB
/
avxdefs.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef AVXDEFS_H__
#define AVXDEFS_H__ 1
// Some tools to help using SIMD vectors.
//
// The baseline requirements for these utilities is SSE2 for 128 bit vectors
// and AVX2 for 256 bit vectors.
//
// Some 128 bit functions have SSSE3 or SSE4.2 implementations that are
// more efficient on capable CPUs.
//
// AVX512F has more powerful 256 bit instructions but with 512 bit vectors
// available there is little reason to use the 256 bit enhancements.
// Proper alignment of data is required, 16 bytes for 128 bit vectors and
// 32 bytes for 256 bit vectors. 64 byte alignment is recommended for
// best cache alignment.
//
// Windows has problems with 256 bit vectors as function arguments passed by
// value. Stack alignment is only guaranteed to 16 bytes and 32 is required.
// Always use pointers for 256 bit arguments.
//
// There exist duplicates of some functions. In general the first defined
// is preferred as it is more efficient but also more restrictive and may
// not be applicable. The less efficient versions are more flexible.
//
// Naming convention:
//
// [prefix]_[operation]_[size]
//
// prefix:
// m128: 128 bit variable vector data
// c128: 128 bit constant vector data
// mm: 128 bit intrinsic function
// m256: 256 bit variable vector data
// c256: 256 bit constant vector data
// mm256: 256 bit intrinsic function
//
// operation;
// data: identifier name
// function: description of operation
//
// size: size of element if applicable, ommitted otherwise.
//
// Macros vs inline functions.
//
// Macros are used for statement functions.
// Macros are used when updating multiple arguments.
// Inline functions are used when multiple statements or local variables are
// needed.
#include <inttypes.h>
#include <immintrin.h>
#include <memory.h>
#include <stdbool.h>
// 128 bit utilities and shortcuts
//
// Experimental code to implement compile time vector initialization
// and support for constant vectors. Useful for arrays, simple constant
// vectors should use _mm_set at run time. The supporting constant and
// function macro definitions are used only for initializing global or
// local, constant or variable vectors.
// Element size is only used for intialization, all run time references should
// use the vector overlay with any element size.
//
// Long form initialization with union member specifier:
//
// __m128i foo()
// {
// const m128_v64[] = { {{ 0, 0 }}, {{ 0, 0 }}, ... };
// return x.m128i;
// }
//
// Short form macros with union member abstracted:
//
// __m128i foo()
// {
// const m128i_v64 x_[] = { c128_zero, c128_zero, ... };
// #define x ((__m128i*)x_);
// return x;
// #undef x
// }
//
union m128_v64 {
uint64_t u64[2];
__m128i m128i;
};
typedef union m128_v64 m128_v64;
union m128_v32 {
uint32_t u32[4];
__m128i m128i;
};
typedef union m128_v32 m128_v32;
union m128_v16 {
uint16_t u16[8];
__m128i m128i;
};
typedef union m128_v16 m128_v16;
union m128_v8 {
uint8_t u8[16];
__m128i m128i;
};
typedef union m128_v8 m128_v8;
// Compile time definition macros, for compile time initializing only.
// x must be a scalar constant.
#define mm_setc_64( x1, x0 ) {{ x1, x0 }}
#define mm_setc1_64( x ) {{ x, x }}
#define mm_setc_32( x3, x2, x1, x0 ) {{ x3, x2, x1, x0 }}
#define mm_setc1_32( x ) {{ x,x,x,x }}
#define mm_setc_16( x7, x6, x5, x4, x3, x2, x1, x0 ) \
{{ x7, x6, x5, x4, x3, x2, x1, x0 }}
#define mm_setc1_16( x ) {{ x,x,x,x, x,x,x,x }}
#define mm_setc_8( x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 ) \
{{ x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 }}
#define mm_setc1_8( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
// Compile time constants, use only for compile time initializing.
#define c128_zero mm_setc1_64( 0ULL )
#define c128_neg1 mm_setc1_64( 0xFFFFFFFFFFFFFFFFULL )
#define c128_one_128 mm_setc_64( 0ULL, 1ULL )
#define c128_one_64 mm_setc1_64( 1ULL )
#define c128_one_32 mm_setc1_32( 1UL )
#define c128_one_16 mm_setc1_16( 1U )
#define c128_one_8 mm_setc1_8( 1U )
// compile test
static const m128_v8 yyy_ = mm_setc1_8( 3 );
#define yyy yyy_.m128i
static const m128_v64 zzz_[] = { c128_zero, c128_zero };
#define zzz ((const __m128i*)zzz_)
static inline __m128i foo()
{
m128_v64 x = mm_setc_64( 1, 2 );
return _mm_add_epi32( _mm_add_epi32( zzz[0], x.m128i ), yyy );
}
//
// Pseudo constants.
// These can't be used for compile time initialization.
// These should be used for all simple vectors. Use above for
// vector array initializing.
//
// _mm_setzero_si128 uses pxor instruction, it's unclear what _mm_set_epi does.
// If a pseudo constant is used repeatedly in a function it may be worthwhile
// to define a register variable to represent that constant.
// register __m128i zero = mm_setzero_si128();
// Constant zero
#define m128_zero _mm_setzero_si128()
// Constant 1
#define m128_one_128 _mm_set_epi64x( 0ULL, 1ULL )
#define m128_one_64 _mm_set1_epi64x( 1ULL )
#define m128_one_32 _mm_set1_epi32( 1UL )
#define m128_one_16 _mm_set1_epi16( 1U )
#define m128_one_8 _mm_set1_epi8( 1U )
// Constant minus 1
#define m128_neg1 _mm_set1_epi64x( 0xFFFFFFFFFFFFFFFFULL )
//
// Basic operations without equivalent SIMD intrinsic
// Bitwise not (~v)
#define mm_not( v ) _mm_xor_si128( (v), m128_neg1 )
// Unary negation (-v)
#define mm_negate_64( v ) _mm_sub_epi64( m128_zero, v )
#define mm_negate_32( v ) _mm_sub_epi32( m128_zero, v )
#define mm_negate_16( v ) _mm_sub_epi16( m128_zero, v )
//
// Vector pointer cast
// p = any aligned pointer
// returns p as pointer to vector type
#define castp_m128i(p) ((__m128i*)(p))
// p = any aligned pointer
// returns *p, watch your pointer arithmetic
#define cast_m128i(p) (*((__m128i*)(p)))
// p = any aligned pointer, i = scaled array index
// returns value p[i]
#define casti_m128i(p,i) (((__m128i*)(p))[(i)])
// p = any aligned pointer, o = scaled offset
// returns pointer p+o
#define casto_m128i(p,o) (((__m128i*)(p))+(o))
//
// Memory functions
// n = number of __m128i, bytes/16
static inline void memset_zero_128( __m128i *dst, int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = m128_zero; }
static inline void memset_128( __m128i *dst, const __m128i a, int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = a; }
static inline void memcpy_128( __m128i *dst, const __m128i *src, int n )
{ for ( int i = 0; i < n; i ++ ) dst[i] = src[i]; }
// A couple of 64 bit scalar functions
// n = bytes/8
static inline void memcpy_64( uint64_t *dst, const uint64_t *src, int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = src[i]; }
static inline void memset_zero_64( uint64_t *src, int n )
{ for ( int i = 0; i < n; i++ ) src[i] = 0; }
static inline void memset_64( uint64_t *dst, uint64_t a, int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = a; }
//
// Bit operations
// Bitfield extraction/insertion.
// Return a vector with n bits extracted and right justified from each
// element of v starting at bit i, v[ i+n..i ] >> i
#define mm_bfextract_64( v, i, n ) \
_mm_srli_epi64( _mm_slli_epi64( v, 64 - ((i)+(n)) ), 64 - (n) )
#define mm_bfextract_32( v, i, n ) \
_mm_srli_epi32( _mm_slli_epi32( v, 32 - ((i)+(n)) ), 32 - (n) )
#define mm_bfextract_16( v, i, n ) \
_mm_srli_epi16( _mm_slli_epi16( v, 16 - ((i)+(n)) ), 16 - (n) )
// Return v with n bits from a inserted starting at bit i.
#define mm_bfinsert_64( v, a, i, n ) \
_mm_or_si128( _mm_and_si128( v, _mm_srli_epi64( _mm_slli_epi64( \
m128_neg1, 64-(n) ), 64-(i) ) ), _mm_slli_epi64( a, i ) )
#define mm_bfinsert_32( v, a, i, n ) \
_mm_or_si128( _mm_and_si128( v, _mm_srli_epi32( _mm_slli_epi32( \
m128_neg1, 32-(n) ), 32-(i) ) ), _mm_slli_epi32( a, i ) )
#define mm_bfinsert_16( v, a, i, n ) \
_mm_or_si128( _mm_and_si128( v, _mm_srli_epi16( _mm_slli_epi16( \
m128_neg1, 16-(n) ), 16-(i) ) ), _mm_slli_epi16( a, i) )
// Return vector with bit i of each element in v set/cleared
#define mm_bitset_64( v, i ) \
_mm_or_si128( _mm_slli_epi64( m128_one_64, i ), v )
#define mm_bitclr_64( v, i ) \
_mm_andnot_si128( _mm_slli_epi64( m128_one_64, i ), v )
#define mm_bitset_32( v, i ) \
_mm_or_si128( _mm_slli_epi32( m128_one_32, i ), v )
#define mm_bitclr_32( v, i ) \
_mm_andnot_si128( _mm_slli_epi32( m128_one_32, i ), v )
#define mm_bitset_16( v, i ) \
_mm_or_si128( _mm_slli_epi16( m128_one_16, i ), v )
#define mm_bitclr_16( v, i ) \
_mm_andnot_si128( _mm_slli_epi16( m128_one_16, i ), v )
// Return vector with bit i in each element toggled
#define mm_bitflip_64( v, i ) \
_mm_xor_si128( _mm_slli_epi64( m128_one_64, i ), v )
#define mm_bitflip_32( v, i ) \
_mm_xor_si128( _mm_slli_epi32( m128_one_32, i ), v )
#define mm_bitflip_16( v, i ) \
_mm_xor_si128( _mm_slli_epi16( m128_one_16, i ), v )
//
// Bit rotations
// XOP is an obsolete AMD feature that has native rotation.
// _mm_roti_epi64( v, c)
// Never implemented by Intel and since removed from Zen by AMD.
// Rotate bits in vector elements
#define mm_ror_64( v, c ) \
_mm_or_si128( _mm_srli_epi64( v, c ), _mm_slli_epi64( v, 64-(c) ) )
#define mm_rol_64( v, c ) \
_mm_or_si128( _mm_slli_epi64( v, c ), _mm_srli_epi64( v, 64-(c) ) )
#define mm_ror_32( v, c ) \
_mm_or_si128( _mm_srli_epi32( v, c ), _mm_slli_epi32( v, 32-(c) ) )
#define mm_rol_32( v, c ) \
_mm_or_si128( _mm_slli_epi32( v, c ), _mm_srli_epi32( v, 32-(c) ) )
#define mm_ror_16( v, c ) \
_mm_or_si128( _mm_srli_epi16( v, c ), _mm_slli_epi16( v, 16-(c) ) )
#define mm_rol_16( v, c ) \
_mm_or_si128( _mm_slli_epi16( v, c ), _mm_srli_epi16( v, 16-(c) ) )
//
// Rotate elements in vector
#define mm_swap_64( v ) _mm_shuffle_epi32( v, 0x4e )
#define mm_ror_1x32( v ) _mm_shuffle_epi32( v, 0x39 )
#define mm_rol_1x32( v ) _mm_shuffle_epi32( v, 0x93 )
#define mm_ror_1x16( v, c ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 1, 0,15,14,13,12,11,10 \
9, 8, 7, 6, 5, 4, 3, 2 ) )
#define mm_rol_1x16( v, c ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 13,12,11,10, 9, 8, 7, 6, \
5, 4, 3, 2, 1, 0,15,14 ) )
#define mm_ror_1x8( v, c ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 0,15,14,13,12,11,10, 9, \
8, 7, 6, 5, 4, 3, 2, 1 ) )
#define mm_rol_1x8( v, c ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 14,13,12,11,10, 9, 8, 7, \
6, 5, 4, 3, 2, 1, 0,15 ) )
// Less efficient shift but more versatile. Use only for odd number rotations.
// Use shuffle above when possible.
// Rotate 16 byte (128 bit) vector by n bytes.
#define mm_bror( v, c ) \
_mm_or_si128( _mm_srli_si128( v, c ), _mm_slli_si128( v, 16-(c) ) )
#define mm_brol( v, c ) \
_mm_or_si128( _mm_slli_si128( v, c ), _mm_srli_si128( v, 16-(c) ) )
// Swap 32 bit elements in each 64 bit lane.
#define mm_swap64_32( v ) _mm_shuffle_epi32( v, 0xb1 )
//
// Rotate elements across two 128 bit vectors as one 256 bit vector
// Swap 128 bit source vectors in place, aka rotate 256 bits by 128 bits.
// void mm128_swap128( __m128i, __m128i )
#define mm_swap_128(v1, v2) \
{ \
v1 = _mm_xor_si128(v1, v2); \
v2 = _mm_xor_si128(v1, v2); \
v1 = _mm_xor_si128(v1, v2); \
}
// Rotate two 128 bit vectors in place as one 256 vector by 1 element
// blend_epi16 is more efficient but requires SSE4.1
#if defined(__SSE4_1__)
// No comparable rol.
#define mm_ror256_1x64( v1, v2 ) \
do { \
__m128i t = _mm_alignr_epi8( v1, v2, 8 ); \
v1 = _mm_alignr_epi8( v2, v1, 8 ); \
v2 = t; \
} while(0)
/*
#define mm_ror256_1x64( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_swap_64( v1 ); \
v2 = mm_swap_64( v2 ); \
t = _mm_blend_epi16( v1, v2, 0xF0 ); \
v2 = _mm_blend_epi16( v1, v2, 0x0F ); \
v1 = t; \
} while(0)
*/
#define mm_rol256_1x64( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_swap_64( v1 ); \
v2 = mm_swap_64( v2 ); \
t = _mm_blend_epi16( v1, v2, 0x0F ); \
v2 = _mm_blend_epi16( v1, v2, 0xF0 ); \
v1 = t; \
} while(0)
// No comparable rol.
#define mm_ror256_1x32( v1, v2 ) \
do { \
__m128i t = _mm_alignr_epi8( v1, v2, 4 ); \
v1 = _mm_alignr_epi8( v2, v1, 4 ); \
v2 = t; \
} while(0)
/*
#define mm_ror256_1x32( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_ror_1x32( v1 ); \
v2 = mm_ror_1x32( v2 ); \
t = _mm_blend_epi16( v1, v2, 0xFC ); \
v2 = _mm_blend_epi16( v1, v2, 0x03 ); \
v1 = t; \
} while(0)
*/
#define mm_rol256_1x32( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_rol_1x32( v1 ); \
v2 = mm_rol_1x32( v2 ); \
t = _mm_blend_epi16( v1, v2, 0x03 ); \
v2 = _mm_blend_epi16( v1, v2, 0xFC ); \
v1 = t; \
} while(0)
// No comparable rol.
#define mm_ror256_1x16( v1, v2 ) \
do { \
__m128i t = _mm_alignr_epi8( v1, v2, 2 ); \
v1 = _mm_alignr_epi8( v2, v1, 2 ); \
v2 = t; \
} while(0)
/*
#define mm_ror256_1x16( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_ror_1x16( v1 ); \
v2 = mm_ror_1x16( v2 ); \
t = _mm_blend_epi16( v1, v2, 0xFE ); \
v2 = _mm_blend_epi16( v1, v2, 0x01 ); \
v1 = t; \
} while(0)
*/
#define mm_rol256_1x16( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_rol_1x16( v1 ); \
v2 = mm_rol_1x16( v2 ); \
t = _mm_blend_epi16( v1, v2, 0x01 ); \
v2 = _mm_blend_epi16( v1, v2, 0xFE ); \
v1 = t; \
} while(0)
#else // SSE2
#define mm_ror256_1x64( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_swap_64( v1 ); \
v2 = mm_swap_64( v2 ); \
t = _mm_blendv_epi8( v1, v2, _mm_set_epi64x(0xffffffffffffffffull, 0ull)); \
v2 = _mm_blendv_epi8( v1, v2, _mm_set_epi64x(0ull, 0xffffffffffffffffull)); \
v1 = t; \
} while(0)
#define mm_rol256_1x64( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_swap_64( v1 ); \
v2 = mm_swap_64( v2 ); \
t = _mm_blendv_epi8( v1, v2, _mm_set_epi64x(0ull, 0xffffffffffffffffull)); \
v2 = _mm_blendv_epi8( v1, v2, _mm_set_epi64x(0xffffffffffffffffull, 0ull)); \
v1 = t; \
} while(0)
#define mm_ror256_1x32( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_ror_1x32( v1 ); \
v2 = mm_ror_1x32( v2 ); \
t = _mm_blendv_epi8( v1, v2, _mm_set_epi32( \
0ul, 0ul, 0ul, 0xfffffffful )); \
v2 = _mm_blendv_epi8( v1, v2, _mm_set_epi32( \
0xfffffffful, 0xfffffffful, 0xfffffffful, 0ul )); \
v1 = t; \
} while(0)
#define mm_rol256_1x32( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_rol_1x32( v1 ); \
v2 = mm_rol_1x32( v2 ); \
t = _mm_blendv_epi8( v1, v2, _mm_set_epi32( \
0xfffffffful, 0xfffffffful, 0xfffffffful, 0ul )); \
v2 = _mm_blendv_epi8( v1, v2, _mm_set_epi32( \
0ul, 0ul, 0ul, 0xfffffffful )); \
v1 = t; \
} while(0)
#define mm_ror256_1x16( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_ror_1x16( v1 ); \
v2 = mm_ror_1x16( v2 ); \
t = _mm_blendv_epi8( v1, v2, _mm_set_epi16( 0, 0, 0, 0, 0, 0, 0, 0xffff )); \
v2 = _mm_blendv_epi8( v1, v2, _mm_set_epi16( 0xffff, 0xffff, 0xffff, 0xffff,\
0xffff, 0xffff, 0xffff, 0 )); \
v1 = t; \
} while(0)
#define mm_rol256_1x16( v1, v2 ) \
do { \
__m128i t; \
v1 = mm_rol_1x16( v1 ); \
v2 = mm_rol_1x16( v2 ); \
t = _mm_blendv_epi8( v1, v2, _mm_set_epi16( 0xffff, 0xffff, 0xffff, 0xffff, \
0xffff, 0xffff, 0xffff, 0 )); \
v2 = _mm_blendv_epi8( v1, v2, _mm_set_epi16( 0, 0, 0, 0, 0, 0, 0, 0xffff )); \
v1 = t; \
} while(0)
#endif // SSE4.1 else SSE2
//
// Swap bytes in vector elements
#if defined(__SSSE3__)
#define mm_bswap_64( v ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 8, 9,10,11,12,13,14,15, \
0, 1, 2, 3, 4, 5, 6, 7 ) )
#define mm_bswap_32( v ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 12,13,14,15, 8, 9,10,11, \
4, 5, 6, 7, 0, 1, 2, 3 ) )
#define mm_bswap_16( v ) \
_mm_shuffle_epi8( v, _mm_set_epi8( 14,15, 12,13, 10,11, 8, 9, \
6, 7, 4, 5, 2, 3, 0, 1 ) )
#else // SSE2
static inline __m128i mm_bswap_64( __m128i v )
{
v = _mm_or_si128( _mm_slli_epi16( v, 8 ), _mm_srli_epi16( v, 8 ) );
v = _mm_shufflelo_epi16( v, _MM_SHUFFLE( 0, 1, 2, 3 ) );
return _mm_shufflehi_epi16( v, _MM_SHUFFLE( 0, 1, 2, 3 ) );
}
static inline __m128i mm_bswap_32( __m128i v )
{
v = _mm_or_si128( _mm_slli_epi16( v, 8 ), _mm_srli_epi16( v, 8 ) );
v = _mm_shufflelo_epi16( v, _MM_SHUFFLE( 2, 3, 0, 1 ) );
return _mm_shufflehi_epi16( v, _MM_SHUFFLE( 2, 3, 0, 1 ) );
}
static inline __m128i mm_bswap_16( __m128i v )
{
return _mm_or_si128( _mm_slli_epi16( v, 8 ), _mm_srli_epi16( v, 8 ) );
}
#endif // SSSE3 else SSE2
/////////////////////////////////////////////////////////////////////
#if defined (__AVX2__)
//
// 256 bit utilities and Shortcuts
// Vector overlays used by compile time vector constants.
// Vector operands of these types require union member .v be
// appended to the symbol name.
// can this be used with aes
union m256_v128 {
uint64_t v64[4];
__m128i v128[2];
__m256i m256i;
};
typedef union m256_v128 m256_v128;
union m256_v64 {
uint64_t u64[4];
__m256i m256i;
};
typedef union m256_v64 m256_v64;
union m256_v32 {
uint32_t u32[8];
__m256i m256i;
};
typedef union m256_v32 m256_v32;
union m256_v16 {
uint16_t u16[16];
__m256i m256i;
};
typedef union m256_v16 m256_v16;
union m256_v8 {
uint8_t u8[32];
__m256i m256i;
};
typedef union m256_v8 m256_v8;
// The following macro constants and fucntions may only be used
// for compile time intialization of constant and variable vectors
// and should only be used for arrays. Use _mm256_set at run time for
// simple constant vectors.
#define mm256_setc_64( x3, x2, x1, x0 ) {{ x3, x2, x1, x0 }}
#define mm256_setc1_64( x ) {{ x,x,x,x }}
#define mm256_setc_32( x7, x6, x5, x4, x3, x2, x1, x0 ) \
{{ x7, x6, x5, x4, x3, x2, x1, x0 }}
#define mm256_setc1_32( x ) {{ x,x,x,x, x,x,x,x }}
#define mm256_setc_16( x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 ) \
{{ x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 }}
#define mm256_setc1_16( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
#define mm256_setc_8( x31, x30, x29, x28, x27, x26, x25, x24, \
x23, x22, x21, x20, x19, x18, x17, x16, \
x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 ) \
{{ x31, x30, x29, x28, x27, x26, x25, x24, \
x23, x22, x21, x20, x19, x18, x17, x16, \
x15, x14, x13, x12, x11, x10, x09, x08, \
x07, x06, x05, x04, x03, x02, x01, x00 }}
#define mm256_setc1_8( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x, \
x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
// Predefined compile time constant vectors.
// Use Pseudo constants at run time for all simple constant vectors.
#define c256_zero mm256_setc1_64( 0ULL )
#define c256_neg1 mm256_setc1_64( 0xFFFFFFFFFFFFFFFFULL )
#define c256_one_256 mm256_setc_64( 0ULL, 0ULL, 0ULL, 1ULL )
#define c256_one_128 mm256_setc_64( 0ULL, 1ULL, 0ULL, 1ULL )
#define c256_one_64 mm256_setc1_64( 1ULL )
#define c256_one_32 mm256_setc1_32( 1UL )
#define c256_one_16 mm256_setc1_16( 1U )
#define c256_one_8 mm256_setc1_8( 1U )
//
// Pseudo constants.
// These can't be used for compile time initialization but are preferable
// for simple constant vectors at run time.
// Constant zero
#define m256_zero _mm256_setzero_si256()
// Constant 1
#define m256_one_256 _mm256_set_epi64x( 0ULL, 0ULL, 0ULL, 1ULL )
#define m256_one_128 _mm256_set_epi64x( 0ULL, 1ULL, 0ULL, 1ULL )
#define m256_one_64 _mm256_set1_epi64x( 1ULL )
#define m256_one_32 _mm256_set1_epi32( 1UL )
#define m256_one_16 _mm256_set1_epi16( 1U )
#define m256_one_8 _mm256_set1_epi16( 1U )
// Constant minus 1
#define m256_neg1 _mm256_set1_epi64x( 0xFFFFFFFFFFFFFFFFULL )
//
// Basic operations without SIMD equivalent
// Bitwise not ( ~x )
#define mm256_not( x ) _mm256_xor_si256( (x), m256_neg1 ) \
// Unary negation ( -a )
#define mm256_negate_64( a ) _mm256_sub_epi64( m256_zero, a )
#define mm256_negate_32( a ) _mm256_sub_epi32( m256_zero, a )
#define mm256_negate_16( a ) _mm256_sub_epi16( m256_zero, a )
//
// Pointer casting
// p = any aligned pointer
// returns p as pointer to vector type, not very useful
#define castp_m256i(p) ((__m256i*)(p))
// p = any aligned pointer
// returns *p, watch your pointer arithmetic
#define cast_m256i(p) (*((__m256i*)(p)))
// p = any aligned pointer, i = scaled array index
// returns value p[i]
#define casti_m256i(p,i) (((__m256i*)(p))[(i)])
// p = any aligned pointer, o = scaled offset
// returns pointer p+o
#define casto_m256i(p,o) (((__m256i*)(p))+(o))
//
// Memory functions
// n = number of 256 bit (32 byte) vectors
static inline void memset_zero_256( __m256i *dst, int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = m256_zero; }
static inline void memset_256( __m256i *dst, const __m256i a, int n )
{ for ( int i = 0; i < n; i++ ) dst[i] = a; }
static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
{ for ( int i = 0; i < n; i ++ ) dst[i] = src[i]; }
//
// Bit operations
// Bit field extraction/insertion.
// Return a vector with bits [i..i+n] extracted and right justified from each
// element of v.
#define mm256_bfextract_64( v, i, n ) \
_mm256_srli_epi64( _mm256_slli_epi64( v, 64 - i - n ), 64 - n )
#define mm256_bfextract_32( v, i, n ) \
_mm256_srli_epi32( _mm256_slli_epi32( v, 32 - i - n ), 32 - n )
#define mm256_bfextract_16( v, i, n ) \
_mm256_srli_epi16( _mm256_slli_epi16( v, 16 - i - n ), 16 - n )
// Return v with bits [i..i+n] of each element replaced with the corresponding
// bits from a.
#define mm256_bfinsert_64( v, a, i, n ) \
_mm256_or_si256( _mm256_and_si256( v, _mm256_srli_epi64( \
_mm256_slli_epi64( m256_neg1, 64-(n) ), 64-(i) ) ), \
_mm256_slli_epi64( a, i) )
#define mm256_bfinsert_32( v, a, i, n ) \
_mm256_or_si256( _mm256_and_si256( v, _mm256_srli_epi32( \
_mm256_slli_epi32( m256_neg1, 32-(n) ), 32-(i) ) ), \
_mm256_slli_epi32( a, i) )
#define mm256_bfinsert_16( v, a, i, n ) \
_mm256_or_si256( _mm256_and_si256( v, _mm256_srli_epi16( \
_mm256_slli_epi16( m256_neg1, 16-(n) ), 16-(i) ) ), \
_mm256_slli_epi16( a, i) )
// return bit n in position, all other bits cleared
#define mm256_bitextract_64 ( x, n ) \
_mm256_and_si256( _mm256_slli_epi64( m256_one_64, n ), x )
#define mm256_bitextract_32 ( x, n ) \
_mm256_and_si256( _mm256_slli_epi32( m256_one_32, n ), x )
#define mm256_bitextract_16 ( x, n ) \
_mm256_and_si256( _mm256_slli_epi16( m256_one_16, n ), x )
// Return bit n as bool (bit 0)
#define mm_bittest_64( v, i ) mm_bfextract_64( v, i, 1 )
#define mm_bittest_32( v, i ) mm_bfextract_32( v, i, 1 )
#define mm_bittest_16( v, i ) mm_bfextract_16( v, i, 1 )
// Return x with bit n set/cleared in all elements
#define mm256_bitset_64( x, n ) \
_mm256_or_si256( _mm256_slli_epi64( m256_one_64, n ), x )
#define mm256_bitclr_64( x, n ) \
_mm256_andnot_si256( _mm256_slli_epi64( m256_one_64, n ), x )
#define mm256_bitset_32( x, n ) \
_mm256_or_si256( _mm256_slli_epi32( m256_one_32, n ), x )
#define mm256_bitclr_32( x, n ) \
_mm256_andnot_si256( _mm256_slli_epi32( m256_one_32, n ), x )
#define mm256_bitset_16( x, n ) \
_mm256_or_si256( _mm256_slli_epi16( m256_one_16, n ), x )
#define mm256_bitclr_16( x, n ) \
_mm256_andnot_si256( _mm256_slli_epi16( m256_one_16, n ), x )
// Return x with bit n toggled
#define mm256_bitflip_64( x, n ) \
_mm256_xor_si256( _mm256_slli_epi64( m256_one_64, n ), x )
#define mm256_bitflip_32( x, n ) \
_mm256_xor_si256( _mm256_slli_epi32( m256_one_32, n ), x )
#define mm256_bitflip_16( x, n ) \
_mm256_xor_si256( _mm256_slli_epi16( m256_one_16, n ), x )
//
// Bit rotations.
// AVX2 as no bit shift for elements greater than 64 bit.
//
// Rotate each element of v by c bits
#define mm256_ror_64( v, c ) \
_mm256_or_si256( _mm256_srli_epi64( v, c ), \
_mm256_slli_epi64( v, 64-(c) ) )
#define mm256_rol_64( v, c ) \
_mm256_or_si256( _mm256_slli_epi64( v, c ), \
_mm256_srli_epi64( v, 64-(c) ) )
#define mm256_ror_32( v, c ) \
_mm256_or_si256( _mm256_srli_epi32( v, c ), \
_mm256_slli_epi32( v, 32-(c) ) )
#define mm256_rol_32( v, c ) \
_mm256_or_si256( _mm256_slli_epi32( v, c ), \
_mm256_srli_epi32( v, 32-(c) ) )
#define mm256_ror_16( v, c ) \
_mm256_or_si256( _mm256_srli_epi16( v, c ), \
_mm256_slli_epi16( v, 16-(c) )
#define mm256_rol_16( v, c ) \
_mm256_or_si256( _mm256_slli_epi16( v, c ), \
_mm256_srli_epi16( v, 16-(c) )
// Rotate bits in each element of v by amount in corresponding element of
// index vector c
#define mm256_rorv_64( v, c ) \
_mm256_or_si256( \
_mm256_srlv_epi64( v, c ), \
_mm256_sllv_epi64( v, \
_mm256_sub_epi64( _mm256_set1_epi64x(64), c ) ) )
#define mm256_rolv_64( v, c ) \
_mm256_or_si256( \
_mm256_sllv_epi64( v, c ), \
_mm256_srlv_epi64( v, \
_mm256_sub_epi64( _mm256_set1_epi64x(64), c ) ) )
#define mm256_rorv_32( v, c ) \
_mm256_or_si256( \
_mm256_srlv_epi32( v, c ), \
_mm256_sllv_epi32( v, \
_mm256_sub_epi32( _mm256_set1_epi32(32), c ) ) )
#define mm256_rolv_32( v, c ) \
_mm256_or_si256( \
_mm256_sllv_epi32( v, c ), \
_mm256_srlv_epi32( v, \
_mm256_sub_epi32( _mm256_set1_epi32(32), c ) ) )
//
// Rotate elements in vector
// AVX2 has no full vector permute for elements less than 32 bits.
// Swap 128 bit elements in 256 bit vector.
#define mm256_swap_128( v ) _mm256_permute4x64_epi64( v, 0x4e )
// Rotate 256 bit vector by one 64 bit element
#define mm256_ror256_1x64( v ) _mm256_permute4x64_epi64( v, 0x39 )
#define mm256_rol256_1x64( v ) _mm256_permute4x64_epi64( v, 0x93 )
// Rotate 256 bit vector by one 32 bit element.
#define mm256_ror256_1x32( v ) \
_mm256_permutevar8x32_epi32( v, _mm256_set_epi32( 0,7,6,5,4,3,2,1 );
#define mm256_rol256_1x32( v ) \
_mm256_permutevar8x32_epi32( v, _mm256_set_epi32( 6,5,4,3,2,1,0,7 );
// Rotate 256 bit vector by three 32 bit elements (96 bits).
#define mm256_ror256_3x32( v ) \
_mm256_permutevar8x32_epi32( v, _mm256_set_epi32( 2,1,0,7,6,5,4,3 );
#define mm256_rol256_3x32( v ) \
_mm256_permutevar8x32_epi32( v, _mm256_set_epi32( 4,3,2,1,0,7,6,5 );
//
// Rotate elements within lanes of 256 bit vector.
// Swap 64 bit elements in each 128 bit lane.
#define mm256_swap128_64( v ) _mm256_shuffle_epi32( v, 0x4e )
// Rotate each 128 bit lane by one 32 bit element.
#define mm256_ror128_1x32( v ) _mm256_shuffle_epi32( v, 0x39 )
#define mm256_rol128_1x32( v ) _mm256_shuffle_epi32( v, 0x93 )
// Rotate each 128 bit lane by c bytes.
#define mm256_ror128_x8( v, c ) \
_mm256_or_si256( _mm256_bsrli_epi128( v, c ), \
_mm256_bslli_epi128( v, 16-(c) ) )
#define mm256_rol128_x8( v, c ) \
_mm256_or_si256( _mm256_bslli_epi128( v, c ), \
_mm256_bsrli_epi128( v, 16-(c) ) )
// Swap 32 bit elements in each 64 bit lane
#define mm256_swap64_32( v ) _mm256_shuffle_epi32( v, 0xb1 )
//
// Rotate two 256 bit vectors as one circular 512 bit vector.
#define mm256_swap512_256(v1, v2) _mm256_permute2x128_si256( v1, v2, 0x4e )
#define mm256_ror512_1x128(v1, v2) _mm256_permute2x128_si256( v1, v2, 0x39 )
#define mm256_rol512_1x128(v1, v2) _mm256_permute2x128_si256( v1, v2, 0x93 )
// No comparable rol.
#define mm256_ror512_1x64( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 8 ); \
v1 = _mm256_alignr_epi8( v2, v1, 8 ); \
v2 = t; \
} while(0)
#define mm256_rol512_1x64( v1, v2 ) \
do { \
__m256i t; \
v1 = mm256_rol_1x64( v1 ); \
v2 = mm256_rol_1x64( v2 ); \
t = _mm256_blend_epi32( v1, v2, 0x03 ); \
v2 = _mm256_blend_epi32( v1, v2, 0xFC ); \
v1 = t; \
} while(0)
#define mm256_ror512_1x32( v1, v2 ) \
do { \
__m256i t = _mm256_alignr_epi8( v1, v2, 4 ); \
v1 = _mm256_alignr_epi8( v2, v1, 4 ); \
v2 = t; \
} while(0)
#define mm256_rol512_1x32( v1, v2 ) \
do { \
__m256i t; \
v1 = mm256_rol_1x32( v1 ); \
v2 = mm256_rol_1x32( v2 ); \
t = _mm256_blend_epi32( v1, v2, 0x01 ); \
v2 = _mm256_blend_epi32( v1, v2, 0xFE ); \
v1 = t; \
} while(0)
//
// Swap bytes in vector elements
#define mm256_bswap_64( v ) \
_mm256_shuffle_epi8( v, _mm256_set_epi8( 8, 9,10,11,12,13,14,15, \
0, 1, 2, 3, 4, 5, 6, 7, \
8, 9,10,11,12,13,14,15, \
0, 1, 2, 3, 4, 5, 6, 7 ) )
#define mm256_bswap_32( v ) \
_mm256_shuffle_epi8( v, _mm256_set_epi8( 12,13,14,15, 8, 9,10,11, \
4, 5, 6, 7, 0, 1, 2, 3, \
12,13,14,15, 8, 9,10,11, \
4, 5, 6, 7, 0, 1, 2, 3 ) )
#define mm256_bswap_16( v ) \
_mm256_shuffle_epi8( v, _mm256_set_epi8( 14,15, 12,13, 10,11, 8, 9, \
6, 7, 4, 5, 2, 3, 0, 1, \
14,15, 12,13, 10,11, 8, 9, \
6, 7, 4, 5, 2, 3, 0, 1 ) )
// Pack/Unpack two 128 bit vectors into/from one 256 bit vector
// usefulness tbd
// __m128i hi, __m128i lo, returns __m256i
#define mm256_pack_2x128( hi, lo ) \
_mm256_inserti128_si256( _mm256_castsi128_si256( lo ), hi, 1 ) \
// __m128i hi, __m128i lo, __m256i src
#define mm256_unpack_2x128( hi, lo, src ) \
lo = _mm256_castsi256_si128( src ); \
hi = _mm256_castsi256_si128( mm256_swap_128( src ) );
// hi = _mm256_extracti128_si256( src, 1 );
// Pseudo parallel AES
// Probably noticeably slower than using pure 128 bit vectors
// Windows has problems with __m256i args passed by value.
// Use pointers to facilitate __m256i to __m128i conversion.
// When key is used switching keys may reduce performance.
inline __m256i mm256_aesenc_2x128( void *msg, void *key )
{
((__m128i*)msg)[0] = _mm_aesenc_si128( ((__m128i*)msg)[0],
((__m128i*)key)[0] );
((__m128i*)msg)[1] = _mm_aesenc_si128( ((__m128i*)msg)[1],
((__m128i*)key)[1] );
}
inline __m256i mm256_aesenc_nokey_2x128( void *msg )
{
((__m128i*)msg)[0] = _mm_aesenc_si128( ((__m128i*)msg)[0], m128_zero );
((__m128i*)msg)[1] = _mm_aesenc_si128( ((__m128i*)msg)[1], m128_zero );
}
// source msg preserved
/*
inline __m256i mm256_aesenc_2x128( void *out, void *msg, void *key )
{
((__m128i*)out)[0] = _mm_aesenc_si128( ((__m128i*)msg)[0],
((__m128i*)key)[0] );
((__m128i*)out)[1] = _mm_aesenc_si128( ((__m128i*)msg)[1],
((__m128i*)key)[1] );
}
inline __m256i mm256_aesenc_nokey_2x128( void *out, void *msg )
{
((__m128i*)out)[0] = _mm_aesenc_si128( ((__m128i*)msg)[0], m128_zero );
((__m128i*)out)[1] = _mm_aesenc_si128( ((__m128i*)msg)[1], m128_zero );
}
*/
inline __m256i mm256_aesenc_2x128_obs( __m256i x, __m256i k )
{
__m128i hi, lo, khi, klo;
mm256_unpack_2x128( hi, lo, x );
mm256_unpack_2x128( khi, klo, k );