-
Notifications
You must be signed in to change notification settings - Fork 0
/
p064.py
157 lines (117 loc) · 3.44 KB
/
p064.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 7 11:44:55 2020
@author: zhixia liu
"""
"""
Project Euler 64: Odd period square roots
All square roots are periodic when written as continued fractions and can be written in the form:
N−−√=a0+1a1+1a2+1a3+…
For example, let us consider 23−−√:23−−√=4+23−−√−4=4+1123√−4=4+11+23√−37
If we continue we would get the following expansion:
23−−√=4+11+13+11+18+…
The process can be summarised as follows:
a0=4,123√−4=23√+47=1+23√−37
a1=1,723√−3=7(23√+3)14=3+23√−32
a2=3,223√−3=2(23√+3)14=1+23√−47
a3=1,723√−4=7(23√+4)7=8+23−−√−4
a4=8,123√−4=23√+47=1+23√−37
a5=1,723√−3=7(23√+3)14=3+23√−32
a6=3,223√−3=2(23√+3)14=1+23√−47
a7=1,723√−4=7(23√+4)7=8+23−−√−4
It can be seen that the sequence is repeating. For conciseness, we use the notation 23−−√=[4;(1,3,1,8)], to indicate that the block (1,3,1,8) repeats indefinitely.
The first ten continued fraction representations of (irrational) square roots are:
2–√=[1;(2)], period=1
3–√=[1;(1,2)], period=2
5–√=[2;(4)], period=1
6–√=[2;(2,4)], period=2
7–√=[2;(1,1,1,4)], period=4
8–√=[2;(1,4)], period=2
10−−√=[3;(6)], period=1
11−−√=[3;(3,6)], period=2
12−−√=[3;(2,6)], period=2
13−−√=[3;(1,1,1,1,6)], period=5
Exactly four continued fractions, for N≤13, have an odd period.
How many continued fractions for N≤10000 have an odd period?
"""
#%% naive bf
from math import sqrt
odd = []
for n in range(2,10001):
deci = []
r = sqrt(n)
while True and len(deci)<10000:
integer = int(r)
decimal = r - integer
if decimal == 0:
break
label = str(decimal)[:8]
if label in deci:
i = deci.index(label)
l = len(deci) - i # period
if l%2 == 1:
odd.append((n,l))
print(n,l)
break
else:
deci.append(label)
r = 1/decimal
print(len(odd))
# round off error
#%% sympy
from sympy import *
odd = []
for n in range(2,10001):
deci = []
r = sqrt(n)
if isinstance(r,Integer):
continue
while True:
integer = int(r.evalf())
decimal = (r - integer).simplify()
if decimal in deci:
i = deci.index(decimal)
l = len(deci) - i # period
if l%2 == 1:
odd.append((n,l))
print(n,l)
break
else:
deci.append(decimal)
r = 1/decimal
print(len(odd))
#%% others
import math, itertools
def cf_period(r):
p = int(math.sqrt(r)) # floor of sqrt(r)
if p*p == r: return 0 # Square number
q=1
remainders = {}
for pos in itertools.count(1):
q=(r-(p*p))/q
floor=int((math.sqrt(r)+p) /float(q))
p = -1* (p- (floor*q))
if (p,q) in remainders:
return pos-remainders[p,q]
remainders[p,q] = pos
print(len([x for x in range(2,10001) if cf_period(x)%2==1]))
#%% others 2
def odd_periodic_square(N):
m = 0
d = 1
a = int(N**0.5)
l = []
while a != 2*int(N**0.5):
m = d*a - m
d = (N-m**2)//d
if d == 0:
return False
else:
a = (int(N**0.5) + m)//d
l.append(a)
return len(l)%2 != 0
count = 0
for n in range(2,10001):
if odd_periodic_square(n):
count += 1
print(count)