-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathdemo_rpn.py
49 lines (39 loc) · 1.54 KB
/
demo_rpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/usr/bin/python
import argparse
import glob
import cv2
import numpy as np
from demo_rpn_utils.net import *
from demo_rpn_utils.run_SiamRPN import SiamRPN_init, SiamRPN_track
from demo_rpn_utils.utils import get_axis_aligned_bbox, cxy_wh_2_rect, load_net
parser = argparse.ArgumentParser(description='PyTorch SiameseX demo')
parser.add_argument('--model', metavar='model', default='SiamRPNPPRes50', type=str,
help='which model to use.')
args = parser.parse_args()
# load net
net = eval(args.model)()
load_net('./cp/{}.pth'.format(args.model), net)
net.eval().cuda()
# image and init box
image_files = sorted(glob.glob('./data/bag/*.jpg'))
init_rbox = [334.02, 128.36, 438.19, 188.78, 396.39, 260.83, 292.23, 200.41]
[cx, cy, w, h] = get_axis_aligned_bbox(init_rbox)
# tracker init
target_pos, target_sz = np.array([cx, cy]), np.array([w, h])
im = cv2.imread(image_files[0]) # HxWxC
state = SiamRPN_init(im, target_pos, target_sz, net, args.model)
# tracking and visualization
toc = 0
for f, image_file in enumerate(image_files):
im = cv2.imread(image_file)
# print(im.shape)
tic = cv2.getTickCount()
state = SiamRPN_track(state, im) # track
toc += cv2.getTickCount()-tic
res = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
res = [int(l) for l in res]
# print(res)
cv2.rectangle(im, (res[0], res[1]), (res[0] + res[2], res[1] + res[3]), (0, 255, 255), 3)
cv2.imshow('SiamRPN', im)
cv2.waitKey(1)
print('Tracking Speed {:.1f}fps'.format((len(image_files)-1)/(toc/cv2.getTickFrequency())))