-
Notifications
You must be signed in to change notification settings - Fork 0
/
cfaa
191 lines (165 loc) · 7.46 KB
/
cfaa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.ensemble import IsolationForest
from transformers import pipeline
# Define Fact Referencers
class FactReferencer:
def __init__(self, data):
self.data = data
def inside_fact(self, context):
relevant_facts = [fact for fact in self.data if self._is_relevant(fact, context)]
return relevant_facts
def outside_fact(self, external_data):
impact_facts = [fact for fact in self.data if self._assess_impact(fact, external_data)]
return impact_facts
def specific_fact(self, scope):
specific_facts = [fact for fact in self.data if self._is_specific(fact, scope)]
return specific_facts
def _is_relevant(self, fact, context):
return fact['context'] == context
def _assess_impact(self, fact, external_data):
return fact['external_influence'] in external_data
def _is_specific(self, fact, scope):
return fact['scope'] == scope
# Criminal Activity Identifier with AI
class CriminalActivityIdentifierAI:
def __init__(self):
self.data = []
self.text_data = []
self.labels = []
self.features = []
self.text_features = []
self.model = None
self.text_classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
self.isolation_forest = IsolationForest(contamination=0.1)
def add_numerical_data(self, features, label):
self.features.append(features)
self.labels.append(label)
def add_textual_data(self, text, label):
self.text_data.append(text)
sentiment_result = self.text_classifier(text)
sentiment_score = sentiment_result[0]['score']
sentiment_label = 1 if sentiment_result[0]['label'] == 'POSITIVE' else 0
self.text_features.append([sentiment_score, sentiment_label])
self.labels.append(label)
def calculate_energy(self, features):
return np.sum(features)
def train_model(self):
combined_features = [np.concatenate([num_feat, text_feat]) for num_feat, text_feat in zip(self.features, self.text_features)]
X_train, X_test, y_train, y_test = train_test_split(combined_features, self.labels, test_size=0.3, random_state=42)
self.model = RandomForestClassifier(n_estimators=100, random_state=42)
self.model.fit(X_train, y_train)
predictions = self.model.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
print(f"Model Accuracy: {accuracy * 100:.2f}%")
def predict_truth_lie(self, features, text):
sentiment_result = self.text_classifier(text)
sentiment_score = sentiment_result[0]['score']
sentiment_label = 1 if sentiment_result[0]['label'] == 'POSITIVE' else 0
combined_features = np.concatenate([features, [sentiment_score, sentiment_label]])
prediction = self.model.predict([combined_features])
return "Truth" if prediction == 1 else "Lie"
def detect_anomalies(self, features):
anomalies = self.isolation_forest.fit_predict(features)
anomaly_indices = np.where(anomalies == -1)
return anomaly_indices
def simulate_markers(self, truth_features, lie_features):
truth_positions = [np.sum(feat) for feat in truth_features]
lie_positions = [np.sum(feat) for feat in lie_features]
plt.figure(figsize=(10, 6))
plt.scatter(truth_positions, np.zeros_like(truth_positions), c='green', label='Truth Markers', s=100)
plt.scatter(lie_positions, np.zeros_like(lie_positions), c='red', label='Lie Markers', s=100)
plt.axhline(0, color='black', linewidth=1)
plt.title('Truth vs Lie Markers Distribution with AI and ML')
plt.xlabel('Position')
plt.yticks([])
plt.legend()
plt.grid(True)
plt.show()
# Carbon Wavelength Measurement and Polygon Drawing
def calculate_wavelength(energy):
speed_of_light = 3e8 # m/s
return speed_of_light / energy
def get_carbon_energy(atomic_weight):
return 12.011 / atomic_weight
def map_to_zero_point_space(emissions_data):
mapped_points = []
for weight, emission in emissions_data:
energy = get_carbon_energy(weight)
wavelength = calculate_wavelength(energy)
mapped_point = [wavelength, emission]
mapped_points.append(mapped_point)
return mapped_points
def draw_polygons(mapped_points):
x_coords = [point[0] for point in mapped_points]
y_coords = [point[1] for point in mapped_points]
plt.figure(figsize=(10, 6))
plt.plot(x_coords + [x_coords[0]], y_coords + [y_coords[0]], 'o-', label='Carbon Emissions Polygon')
plt.xlabel('Wavelength')
plt.ylabel('Emission Value')
plt.title('Polygon of Carbon Emissions in Zero-Point Space')
plt.legend()
plt.grid(True)
plt.show()
# Language Model for Polygon Descriptions
def generate_polygon_description(polygon_points):
description_model = pipeline("text-generation", model="gpt-3.5-turbo")
x_coords = [point[0] for point in polygon_points]
y_coords = [point[1] for point in polygon_points]
description = description_model(f"The polygon has the following coordinates: {list(zip(x_coords, y_coords))}.")
return description[0]['generated_text']
# Example Usage
# Sample Data for Fact Referencer
data = [
{'context': 'local', 'external_influence': 'global', 'scope': 'factory'},
{'context': 'global', 'external_influence': 'local', 'scope': 'region'},
]
fact_referencer = FactReferencer(data)
context = 'local'
external_data = ['global']
scope = 'factory'
inside_facts = fact_referencer.inside_fact(context)
outside_facts = fact_referencer.outside_fact(external_data)
specific_facts = fact_referencer.specific_fact(scope)
print("Inside Facts:", inside_facts)
print("Outside Facts:", outside_facts)
print("Specific Facts:", specific_facts)
# Example Data for CriminalActivityIdentifierAI
identifier_ai = CriminalActivityIdentifierAI()
truth_data = [
([5.5, 12.0, 0.9], "The suspect was seen leaving the scene at 3 PM."),
([6.1, 11.5, 1.2], "Witnesses confirmed that the event occurred at the stated time.")
]
lie_data = [
([2.5, 25.0, 0.3], "The suspect claimed to be at home, but no one can verify."),
([3.0, 22.0, 0.4], "The story doesn't match the evidence found at the scene.")
]
for features, text in truth_data:
identifier_ai.add_numerical_data(features, label=1)
identifier_ai.add_textual_data(text, label=1)
for features, text in lie_data:
identifier_ai.add_numerical_data(features, label=0)
identifier_ai.add_textual_data(text, label=0)
identifier_ai.train_model()
new_features = [5.7, 12.1, 0.95]
new_text = "The suspect was seen near the area but denies being involved."
prediction = identifier_ai.predict_truth_lie(new_features, new_text)
print(f"Prediction for new data: {prediction}")
anomalies = identifier_ai.detect_anomalies(identifier_ai.features)
print(f"Anomalies detected at indices: {anomalies}")
identifier_ai.simulate_markers([f[0] for f in truth_data], [f[0] for f in lie_data])
# Carbon Emissions Polygon
emissions_data = [
(12.011, 100),
(12.011, 150),
(12.011, 200),
(12.011, 250)
]
mapped_points = map_to_zero_point_space(emissions_data)
draw_polygons(mapped_points)
# Generate Polygon Description
description = generate_polygon_description(mapped_points)
print("Polygon Description:", description)