-
Notifications
You must be signed in to change notification settings - Fork 0
/
cfaf.kt
101 lines (84 loc) · 3.27 KB
/
cfaf.kt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
import pandas as pd
from scipy.spatial import distance
# Constants
PLANCKS_CONSTANT = 6.626e-34 # Planck's constant in Js
SPEED_OF_LIGHT = 3.0e8 # Speed of light in m/s
CARBON_ATOMIC_WEIGHT = 12.0 # Atomic weight of carbon in amu
THRESHOLD = 1.0 # Define an appropriate threshold for matching
# Constants for quantized points and evidence tracking
QUANTIZED_POINTS = np.array([...]) # Define quantized points based on new improvements
EVIDENCE_DATABASE = pd.DataFrame(columns=['Name', 'Description', 'Evidence'])
def calculate_wavelength(energy):
"""
Calculate the wavelength based on energy using Planck's equation.
"""
return PLANCKS_CONSTANT * SPEED_OF_LIGHT / energy
def polygon_properties(sides, length):
"""
Calculate the properties of a regular polygon with given number of sides and side length.
"""
if sides < 3:
raise ValueError("A polygon must have at least 3 sides.")
# Calculate interior angle
interior_angle = (sides - 2) * 180 / sides
# Calculate area
area = (sides * length**2) / (4 * np.tan(np.pi / sides))
return {
'Interior Angle': interior_angle,
'Area': area
}
def identify_criminal(name, description):
"""
Identify potential criminals based on name and description.
Utilizes advanced quantization for matching.
"""
# Generate a quantized representation of the description
description_vector = quantize_description(description)
# Match against the database
potential_matches = []
for index, row in EVIDENCE_DATABASE.iterrows():
evidence_vector = quantize_description(row['Description'])
distance_score = distance.euclidean(description_vector, evidence_vector)
if distance_score < THRESHOLD: # Define THRESHOLD based on new data
potential_matches.append({
'Name': row['Name'],
'Description': row['Description'],
'Evidence': row['Evidence']
})
return potential_matches
def quantize_description(description):
"""
Convert description into a quantized vector.
"""
# Placeholder for advanced quantization logic
vector = np.zeros(len(QUANTIZED_POINTS))
# Implement detailed quantization process
return vector
def add_evidence(name, description, evidence):
"""
Add evidence to the database.
"""
global EVIDENCE_DATABASE
EVIDENCE_DATABASE = EVIDENCE_DATABASE.append({
'Name': name,
'Description': description,
'Evidence': evidence
}, ignore_index=True)
def main():
# Example energy calculation (for demonstration purposes)
energy = 3.0e-19 # Example energy in Joules
wavelength = calculate_wavelength(energy)
print(f'Calculated Wavelength: {wavelength:.2e} meters')
# Example polygon extrapolation
sides = 6
length = 1.0 # Side length in meters
properties = polygon_properties(sides, length)
print(f'Polygon Properties: {properties}')
# Example evidence handling
add_evidence('John Doe', 'Suspected in robbery', 'Fingerprint evidence')
# Identify potential criminals
results = identify_criminal('John Doe', 'Robbery suspect with fingerprints')
print(f'Potential Matches: {results}')
if __name__ == "__main__":
main()