-
Notifications
You must be signed in to change notification settings - Fork 0
/
cfaqpec
126 lines (105 loc) · 3.88 KB
/
cfaqpec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import math
import time
class QuantizedPoint:
def __init__(self, name, energy, space):
self.name = name
self.energy = energy
self.space = space
def calculate_distance(point1, point2):
return math.sqrt((point1.energy - point2.energy) ** 2 + (point1.space - point2.space) ** 2)
def find_associations(points, distance_threshold):
associations = []
for i, point1 in enumerate(points):
for point2 in points[i + 1:]:
distance = calculate_distance(point1, point2)
if distance <= distance_threshold:
associations.append((point1, point2))
return associations
def evaluate_energy_equation(equation, m, c, r=1, i=1, l=1):
if equation == "E=mci²":
return m * c * i ** 2
elif equation == "E=(-1)(mci)²":
return -1 * (m * c * i) ** 2
elif equation == "E=mc²":
return m * c ** 2
else:
return None
class CrimeDataGatherer:
def __init__(self):
self.crime_data = []
self.frequency = "2.5GHz" # Initial frequency setting
def gather_data(self):
print("Gathering crime-related data...")
self.generate_frequency_bursts()
time.sleep(2) # Simulate data gathering process
self.crime_data = [
{"name": "John Doe", "location": "Street A, City X", "description": "Theft"},
{"name": "Jane Smith", "location": "Street B, City Y", "description": "Assault"},
{"name": "Alice Johnson", "location": "Street C, City Z", "description": "Vandalism"}
]
print("Data gathering complete.")
def process_data(self):
print("Processing gathered crime data...")
time.sleep(1) # Simulate data processing
print("Crime data processing complete.")
def generate_frequency_bursts(self):
print("Generating frequency bursts while gathering data...")
for frequency in range(2500, 4411, 100):
print(f"Frequency burst: {frequency}MHz")
self.frequency = f"{frequency / 1000}GHz"
self.gather_data()
time.sleep(0.5)
class CrimeDataAnalyzer:
def __init__(self):
self.data_gatherer = CrimeDataGatherer()
def search_crime_data(self):
self.data_gatherer.process_data()
print("Crime data search functionality:")
for crime in self.data_gatherer.crime_data:
print(f"- Name: {crime['name']}, Location: {crime['location']}, Description: {crime['description']}")
def calculate_nested_exponential_limit(iterations):
nested_pi = math.pi
for _ in range(iterations):
nested_pi = math.pow(nested_pi, nested_pi)
return math.pow(nested_pi, 1.0 / 3)
def main():
# Quantized points
points = [
QuantizedPoint("Point1", 100.0, 50.0),
QuantizedPoint("Point2", 150.0, 30.0),
QuantizedPoint("Point3", 90.0, 60.0),
QuantizedPoint("Point4", 120.0, 40.0)
]
distance_threshold = 20.0
associations = find_associations(points, distance_threshold)
print("Associations within a distance threshold of", distance_threshold, ":")
for point1, point2 in associations:
print(point1.name, "-", point2.name)
# Nested exponential limit calculation
nested_iterations = 100000
pi_nested_limit_value = calculate_nested_exponential_limit(nested_iterations)
print("Nested Exponential Limit Value:", pi_nested_limit_value)
# Evaluate equations
m = 2
c = 3
r = 4
i = 5
l = 6
equations = [
"E=mci²",
"(-)E=mci²",
"E≠mci²",
"E=(-1)(mci)²",
"E≠imc",
"E=(-1)((λ^i)mc)²",
"E≠(imc)²",
"E=(-1)imc²",
"E≠imc²",
"E=(-1)((λ^i)(mc))²",
"E≠((i)(mc))²"
]
for equation in equations:
result = evaluate_energy_equation(equation, m, c, r, i, l)
print(f"{equation}: {result}")
if __name__ == "__main__":
main()