-
Notifications
You must be signed in to change notification settings - Fork 60
/
tensorflow_MNIST_cDCGAN.py
249 lines (199 loc) · 9.54 KB
/
tensorflow_MNIST_cDCGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os, time, itertools, imageio, pickle, random
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# leaky_relu
def lrelu(X, leak=0.2):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * X + f2 * tf.abs(X)
# G(z)
def generator(x, y_label, isTrain=True, reuse=False):
with tf.variable_scope('generator', reuse=reuse):
# initializer
w_init = tf.truncated_normal_initializer(mean=0.0, stddev=0.02)
b_init = tf.constant_initializer(0.0)
# concat layer
cat1 = tf.concat([x, y_label], 3)
# 1st hidden layer
deconv1 = tf.layers.conv2d_transpose(cat1, 256, [7, 7], strides=(1, 1), padding='valid', kernel_initializer=w_init, bias_initializer=b_init)
lrelu1 = lrelu(tf.layers.batch_normalization(deconv1, training=isTrain), 0.2)
# 2nd hidden layer
deconv2 = tf.layers.conv2d_transpose(lrelu1, 128, [5, 5], strides=(2, 2), padding='same', kernel_initializer=w_init, bias_initializer=b_init)
lrelu2 = lrelu(tf.layers.batch_normalization(deconv2, training=isTrain), 0.2)
# output layer
deconv3 = tf.layers.conv2d_transpose(lrelu2, 1, [5, 5], strides=(2, 2), padding='same', kernel_initializer=w_init, bias_initializer=b_init)
o = tf.nn.tanh(deconv3)
return o
# D(x)
def discriminator(x, y_fill, isTrain=True, reuse=False):
with tf.variable_scope('discriminator', reuse=reuse):
# initializer
w_init = tf.truncated_normal_initializer(mean=0.0, stddev=0.02)
b_init = tf.constant_initializer(0.0)
# concat layer
cat1 = tf.concat([x, y_fill], 3)
# 1st hidden layer
conv1 = tf.layers.conv2d(cat1, 128, [5, 5], strides=(2, 2), padding='same', kernel_initializer=w_init, bias_initializer=b_init)
lrelu1 = lrelu(conv1, 0.2)
# 2nd hidden layer
conv2 = tf.layers.conv2d(lrelu1, 256, [5, 5], strides=(2, 2), padding='same', kernel_initializer=w_init, bias_initializer=b_init)
lrelu2 = lrelu(tf.layers.batch_normalization(conv2, training=isTrain), 0.2)
# output layer
conv3 = tf.layers.conv2d(lrelu2, 1, [7, 7], strides=(1, 1), padding='valid', kernel_initializer=w_init)
o = tf.nn.sigmoid(conv3)
return o, conv3
# preprocess
img_size = 28
onehot = np.eye(10)
temp_z_ = np.random.normal(0, 1, (10, 1, 1, 100))
fixed_z_ = temp_z_
fixed_y_ = np.zeros((10, 1))
for i in range(9):
fixed_z_ = np.concatenate([fixed_z_, temp_z_], 0)
temp = np.ones((10, 1)) + i
fixed_y_ = np.concatenate([fixed_y_, temp], 0)
fixed_y_ = onehot[fixed_y_.astype(np.int32)].reshape((100, 1, 1, 10))
def show_result(num_epoch, show = False, save = False, path = 'result.png'):
test_images = sess.run(G_z, {z: fixed_z_, y_label: fixed_y_, isTrain: False})
size_figure_grid = 10
fig, ax = plt.subplots(size_figure_grid, size_figure_grid, figsize=(5, 5))
for i, j in itertools.product(range(size_figure_grid), range(size_figure_grid)):
ax[i, j].get_xaxis().set_visible(False)
ax[i, j].get_yaxis().set_visible(False)
for k in range(10*10):
i = k // 10
j = k % 10
ax[i, j].cla()
ax[i, j].imshow(np.reshape(test_images[k], (img_size, img_size)), cmap='gray')
label = 'Epoch {0}'.format(num_epoch)
fig.text(0.5, 0.04, label, ha='center')
if save:
plt.savefig(path)
if show:
plt.show()
else:
plt.close()
def show_train_hist(hist, show = False, save = False, path = 'Train_hist.png'):
x = range(len(hist['D_losses']))
y1 = hist['D_losses']
y2 = hist['G_losses']
plt.plot(x, y1, label='D_loss')
plt.plot(x, y2, label='G_loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(loc=4)
plt.grid(True)
plt.tight_layout()
if save:
plt.savefig(path)
if show:
plt.show()
else:
plt.close()
# training parameters
batch_size = 100
# lr = 0.0002
train_epoch = 30
global_step = tf.Variable(0, trainable=False)
lr = tf.train.exponential_decay(0.0002, global_step, 500, 0.95, staircase=True)
# load MNIST
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True, reshape=[])
# variables : input
x = tf.placeholder(tf.float32, shape=(None, img_size, img_size, 1))
z = tf.placeholder(tf.float32, shape=(None, 1, 1, 100))
y_label = tf.placeholder(tf.float32, shape=(None, 1, 1, 10))
y_fill = tf.placeholder(tf.float32, shape=(None, img_size, img_size, 10))
isTrain = tf.placeholder(dtype=tf.bool)
# networks : generator
G_z = generator(z, y_label, isTrain)
# networks : discriminator
D_real, D_real_logits = discriminator(x, y_fill, isTrain)
D_fake, D_fake_logits = discriminator(G_z, y_fill, isTrain, reuse=True)
# loss for each network
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real_logits, labels=tf.ones([batch_size, 1, 1, 1])))
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake_logits, labels=tf.zeros([batch_size, 1, 1, 1])))
D_loss = D_loss_real + D_loss_fake
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake_logits, labels=tf.ones([batch_size, 1, 1, 1])))
# trainable variables for each network
T_vars = tf.trainable_variables()
D_vars = [var for var in T_vars if var.name.startswith('discriminator')]
G_vars = [var for var in T_vars if var.name.startswith('generator')]
# optimizer for each network
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
optim = tf.train.AdamOptimizer(lr, beta1=0.5)
D_optim = optim.minimize(D_loss, global_step=global_step, var_list=D_vars)
# D_optim = tf.train.AdamOptimizer(lr, beta1=0.5).minimize(D_loss, var_list=D_vars)
G_optim = tf.train.AdamOptimizer(lr, beta1=0.5).minimize(G_loss, var_list=G_vars)
# open session and initialize all variables
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# MNIST resize and normalization
# train_set = tf.image.resize_images(mnist.train.images, [img_size, img_size]).eval()
# train_set = (train_set - 0.5) / 0.5 # normalization; range: -1 ~ 1
train_set = (mnist.train.images - 0.5) / 0.5
train_label = mnist.train.labels
# results save folder
root = 'MNIST_cDCGAN_results/'
model = 'MNIST_cDCGAN_'
if not os.path.isdir(root):
os.mkdir(root)
if not os.path.isdir(root + 'Fixed_results'):
os.mkdir(root + 'Fixed_results')
train_hist = {}
train_hist['D_losses'] = []
train_hist['G_losses'] = []
train_hist['per_epoch_ptimes'] = []
train_hist['total_ptime'] = []
# training-loop
np.random.seed(int(time.time()))
print('training start!')
start_time = time.time()
for epoch in range(train_epoch):
G_losses = []
D_losses = []
epoch_start_time = time.time()
shuffle_idxs = random.sample(range(0, train_set.shape[0]), train_set.shape[0])
shuffled_set = train_set[shuffle_idxs]
shuffled_label = train_label[shuffle_idxs]
for iter in range(shuffled_set.shape[0] // batch_size):
# update discriminator
x_ = shuffled_set[iter*batch_size:(iter+1)*batch_size]
y_label_ = shuffled_label[iter*batch_size:(iter+1)*batch_size].reshape([batch_size, 1, 1, 10])
y_fill_ = y_label_ * np.ones([batch_size, img_size, img_size, 10])
z_ = np.random.normal(0, 1, (batch_size, 1, 1, 100))
loss_d_, _ = sess.run([D_loss, D_optim], {x: x_, z: z_, y_fill: y_fill_, y_label: y_label_, isTrain: True})
# update generator
z_ = np.random.normal(0, 1, (batch_size, 1, 1, 100))
y_ = np.random.randint(0, 9, (batch_size, 1))
y_label_ = onehot[y_.astype(np.int32)].reshape([batch_size, 1, 1, 10])
y_fill_ = y_label_ * np.ones([batch_size, img_size, img_size, 10])
loss_g_, _ = sess.run([G_loss, G_optim], {z: z_, x: x_, y_fill: y_fill_, y_label: y_label_, isTrain: True})
errD_fake = D_loss_fake.eval({z: z_, y_label: y_label_, y_fill: y_fill_, isTrain: False})
errD_real = D_loss_real.eval({x: x_, y_label: y_label_, y_fill: y_fill_, isTrain: False})
errG = G_loss.eval({z: z_, y_label: y_label_, y_fill: y_fill_, isTrain: False})
D_losses.append(errD_fake + errD_real)
G_losses.append(errG)
epoch_end_time = time.time()
per_epoch_ptime = epoch_end_time - epoch_start_time
print('[%d/%d] - ptime: %.2f loss_d: %.3f, loss_g: %.3f' % ((epoch + 1), train_epoch, per_epoch_ptime, np.mean(D_losses), np.mean(G_losses)))
fixed_p = root + 'Fixed_results/' + model + str(epoch + 1) + '.png'
show_result((epoch + 1), save=True, path=fixed_p)
train_hist['D_losses'].append(np.mean(D_losses))
train_hist['G_losses'].append(np.mean(G_losses))
train_hist['per_epoch_ptimes'].append(per_epoch_ptime)
end_time = time.time()
total_ptime = end_time - start_time
train_hist['total_ptime'].append(total_ptime)
print('Avg per epoch ptime: %.2f, total %d epochs ptime: %.2f' % (np.mean(train_hist['per_epoch_ptimes']), train_epoch, total_ptime))
print("Training finish!... save training results")
with open(root + model + 'train_hist.pkl', 'wb') as f:
pickle.dump(train_hist, f)
show_train_hist(train_hist, save=True, path=root + model + 'train_hist.png')
images = []
for e in range(train_epoch):
img_name = root + 'Fixed_results/' + model + str(e + 1) + '.png'
images.append(imageio.imread(img_name))
imageio.mimsave(root + model + 'generation_animation.gif', images, fps=5)
sess.close()