Skip to content
This repository has been archived by the owner on May 22, 2023. It is now read-only.

Latest commit

 

History

History
102 lines (68 loc) · 1.64 KB

README.md

File metadata and controls

102 lines (68 loc) · 1.64 KB

Ant Colony Optimization

Implementation of the Ant Colony Optimization algorithm in Python

Currently works on 2D Cartesian coordinate system

Installation

From PyPi

pip install aco

Using Poetry

poetry add aco

Usage

AntColony(
    nodes,
    start=None,
    ant_count=300,
    alpha=0.5,
    beta=1.2,
    pheromone_evaporation_rate=0.40,
    pheromone_constant=1000.0,
    iterations=300,
)

Travelling Salesman Problem

import matplotlib.pyplot as plt
import random

from aco import AntColony


plt.style.use("dark_background")


COORDS = (
    (20, 52),
    (43, 50),
    (20, 84),
    (70, 65),
    (29, 90),
    (87, 83),
    (73, 23),
)


def random_coord():
    r = random.randint(0, len(COORDS))
    return r


def plot_nodes(w=12, h=8):
    for x, y in COORDS:
        plt.plot(x, y, "g.", markersize=15)
    plt.axis("off")
    fig = plt.gcf()
    fig.set_size_inches([w, h])


def plot_all_edges():
    paths = ((a, b) for a in COORDS for b in COORDS)

    for a, b in paths:
        plt.plot((a[0], b[0]), (a[1], b[1]))


plot_nodes()

colony = AntColony(COORDS, ant_count=300, iterations=300)

optimal_nodes = colony.get_path()

for i in range(len(optimal_nodes) - 1):
    plt.plot(
        (optimal_nodes[i][0], optimal_nodes[i + 1][0]),
        (optimal_nodes[i][1], optimal_nodes[i + 1][1]),
    )


plt.show()

screenshot


Reference