forked from mys007/ecc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
315 lines (244 loc) · 14.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
"""
Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs
https://github.com/mys007/ecc
https://arxiv.org/abs/1704.02901
2017 Martin Simonovsky
"""
from __future__ import division
from __future__ import print_function
from builtins import range
import time
import random
import numpy as np
import json
import os
import sys
import math
import argparse
import ast
from tqdm import tqdm
import logging
import torch
import torch.nn as nn
import torch.optim as optim
import torchnet as tnt
from torch.autograd import Variable
import functools
import pointcloud_dataset
import models
import ecc
def main():
parser = argparse.ArgumentParser(description='ECC')
# Optimization arguments
parser.add_argument('--wd', default=5e-4, type=float, help='Weight decay')
parser.add_argument('--lr', default=0.005, type=float, help='Initial learning rate')
parser.add_argument('--lr_decay', default=0.1, type=float, help='Multiplicative factor used on learning rate at `lr_steps`')
parser.add_argument('--lr_steps', default='[]', help='List of epochs where the learning rate is decreased by `lr_decay`')
parser.add_argument('--momentum', default=0.9, type=float, help='Momentum')
parser.add_argument('--epochs', default=1, type=int, help='Number of epochs to train. If <=0, only testing will be done.')
parser.add_argument('--batch_size', default=32, type=int, help='Batch size')
parser.add_argument('--batch_parts', default=1, type=int, help='Batch can be evaluated sequentially in multiple shards, >=1, very useful in low memory settings, though computation is not strictly equivalent due to batch normalization runnning statistics.')
# Learning process arguments
parser.add_argument('--cuda', default=1, type=int, help='Bool, use cuda')
parser.add_argument('--nworkers', default=0, type=int, help='Num subprocesses to use for data loading. 0 means that the data will be loaded in the main process')
parser.add_argument('--test_nth_epoch', default=1, type=int, help='Test each n-th epoch during training')
parser.add_argument('--save_nth_epoch', default=1, type=int, help='Save model each n-th epoch during training')
# Dataset
parser.add_argument('--dataset', default='sydney', help='Dataset name: sydney|modelnet10|modelnet40')
parser.add_argument('--cvfold', default=0, type=int, help='Fold left-out for testing in leave-one-out setting (Sydney,...)')
parser.add_argument('--odir', default='results', help='Directory to store results')
parser.add_argument('--resume', default='', help='Loads a previously saved model.')
# Model
parser.add_argument('--model_config', default='i_0.1_0.2,c_16,b,r,d_0.3,m_1e10_1e10,b,r,f_14', help='Defines the model as a sequence of layers, see models.py for definitions of respective layers and acceptable arguments.')
parser.add_argument('--seed', default=1, type=int, help='Seed for random initialisation (default: 123)')
parser.add_argument('--test_sample_avging', default='none', help='Test-time result aggregation over dataset-specific number of augmented sample, vote|score|none')
# Point cloud processing
parser.add_argument('--pc_augm_input_dropout', default=0.1, type=float, help='Training augmentation: Probability of removing points in input point clouds')
parser.add_argument('--pc_augm_scale', default=1.1, type=float, help='Training augmentation: Uniformly random scaling in [1/scale, scale]')
parser.add_argument('--pc_augm_rot', default=1, type=int, help='Training augmentation: Bool, random rotation around z-axis')
parser.add_argument('--pc_augm_mirror_prob', default=0.5, type=float, help='Training augmentation: Probability of mirroring about x or y axes')
parser.add_argument('--pc_knn', default=0, type=int, help='Bool, use knn-search instead of radius-search for neighborhood building')
parser.add_argument('--pc_attribs', default='polareukl', help='Edge attribute definition: eukl|polar coordinates')
# Filter generating network
parser.add_argument('--fnet_widths', default='[]', help='List of width of hidden filter gen net layers (excluding the input and output ones, they are automatic)')
parser.add_argument('--fnet_llbias', default=1, type=int, help='Bool, use bias in the last layer in filter gen net')
parser.add_argument('--fnet_orthoinit', default=1, type=int, help='Bool, use orthogonal weight initialization for filter gen net.')
parser.add_argument('--edgecompaction', default=1, type=int, help='Bool, compact all edges attribute vectors into a unique set (faster and more mem-efficient if edge attibutes tend to repeat, usually with categorical types).')
parser.add_argument('--edge_mem_limit', default=1e20, type=int, help='Number of edges to process in parallel during computation, a low number can reduce memory peaks.')
args = parser.parse_args()
args.start_epoch = 0
args.lr_steps = ast.literal_eval(args.lr_steps)
args.fnet_widths = ast.literal_eval(args.fnet_widths)
print('Will save to ' + args.odir)
if not os.path.exists(args.odir):
os.makedirs(args.odir)
with open(os.path.join(args.odir, 'cmdline.txt'), 'w') as f:
f.write(" ".join(sys.argv))
seed(args.seed, args.cuda)
logging.getLogger().setLevel(logging.INFO) #set to logging.DEBUG to allow for more prints
# Decide on the dataset
if args.dataset=='sydney':
dbinfo = pointcloud_dataset.get_sydney_info(args)
create_dataset = pointcloud_dataset.get_sydney
edge_feat_func = pointcloud_dataset.cloud_edge_feats
elif args.dataset=='modelnet10' or args.dataset=='modelnet40':
dbinfo = pointcloud_dataset.get_modelnet_info(args)
create_dataset = pointcloud_dataset.get_modelnet
edge_feat_func = pointcloud_dataset.cloud_edge_feats
else:
raise NotImplementedError('Unknown dataset ' + rgs.dataset)
# Create model and optimizer
if args.resume != '':
model, optimizer = resume(args, dbinfo)
else:
model = create_model(args, dbinfo)
optimizer = create_optimizer(args, model)
train_dataset = create_dataset(args, model.pyramid_conf, True)
test_dataset = create_dataset(args, model.pyramid_conf, False)
collate_func = functools.partial(ecc.graph_info_collate_classification, edge_func=functools.partial(edge_feat_func, args=args))
assert args.batch_size % args.batch_parts == 0
############
def train(epoch):
model.train()
#TODO: set seed to dataset (multiprocess)
loader = torch.utils.data.DataLoader(train_dataset, batch_size=int(args.batch_size/args.batch_parts), collate_fn=collate_func, num_workers=args.nworkers, shuffle=True)
if logging.getLogger().getEffectiveLevel() > logging.DEBUG: loader = tqdm(loader, ncols=100)
t_loader_meter, t_trainer_meter = tnt.meter.AverageValueMeter(), tnt.meter.AverageValueMeter()
loss_meter = tnt.meter.AverageValueMeter()
acc_meter = tnt.meter.ClassErrorMeter(accuracy=True)
t0 = time.time()
# iterate over dataset in batches
for bidx, (inputs, targets, GIs, PIs) in enumerate(loader):
t_loader = 1000*(time.time()-t0)
model.set_info(GIs, PIs, args.cuda)
if args.cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
if bidx % args.batch_parts == 0:
optimizer.zero_grad()
t0 = time.time()
outputs = model(inputs)
assert outputs.size(1)==dbinfo['classes'], "Model should output {:d} dimensions.".format(dbinfo['classes'])
loss = nn.functional.cross_entropy(outputs, targets)
loss.backward()
t_trainer = 1000*(time.time()-t0)
loss_meter.add(loss.data[0])
acc_meter.add(outputs.data, targets.data)
if bidx % args.batch_parts == args.batch_parts-1: #
if args.batch_parts>0:
for p in model.parameters():
p.grad.data.div_(args.batch_parts)
optimizer.step()
t_loader_meter.add(t_loader)
t_trainer_meter.add(t_trainer)
logging.debug('Batch loss %f, Loader time %f ms, Trainer time %f ms.', loss.data[0], t_loader, t_trainer)
t0 = time.time()
return acc_meter.value()[0], loss_meter.value()[0], t_loader_meter.value()[0], t_trainer_meter.value()[0]
############
def eval(epoch):
model.eval()
#TODO: set seed to dataset (multiprocess)
if args.test_sample_avging != 'none':
loader = torch.utils.data.DataLoader(test_dataset, batch_size=dbinfo['test_set_expansion'], collate_fn=collate_func, num_workers=args.nworkers)
else:
loader = torch.utils.data.DataLoader(test_dataset, batch_size=int(args.batch_size/args.batch_parts), collate_fn=collate_func, num_workers=args.nworkers)
if logging.getLogger().getEffectiveLevel() > logging.DEBUG: loader = tqdm(loader, ncols=100)
acc_meter = tnt.meter.ClassErrorMeter(accuracy=True)
cm_meter = tnt.meter.ConfusionMeter(k=dbinfo['classes'])
# iterate over dataset in batches
for bidx, (inputs, targets, GIs, PIs) in enumerate(loader):
model.set_info(GIs, PIs, args.cuda)
if args.cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = model(inputs)
if args.test_sample_avging != 'none':
if args.test_sample_avging == 'vote':
_, ii = torch.max(outputs.data,1)
outputs.data.fill_(0).scatter_(1, ii, 1)
acc_meter.add(outputs.data.mean(0), targets.data.narrow(0,1,1))
cm_meter.add(outputs.data.mean(0), targets.data.narrow(0,1,1))
else:
acc_meter.add(outputs.data, targets.data)
cm_meter.add(outputs.data, targets.data)
f1 = compute_F1(cm_meter.value())
cacc = compute_class_acc(cm_meter.value())
return acc_meter.value()[0], f1, cacc
stats = []
# Training loop
for epoch in range(args.start_epoch, args.epochs):
print('Epoch {}/{} ({}):'.format(epoch, args.epochs, args.odir))
acc_train, loss, t_loader, t_trainer = train(epoch)
optimizer = lr_scheduler(optimizer, epoch, args, model)
if (epoch+1) % args.test_nth_epoch == 0 or epoch+1==args.epochs:
acc_test, f1_test, cacc_test = eval(epoch)
print('-> Train accuracy: {}, \tLoss: {}, \tTest accuracy: {}'.format(acc_train, loss, acc_test))
else:
acc_test, f1_test, cacc_test = 0, 0, 0
print('-> Train accuracy: {}, \tLoss: {}'.format(acc_train, loss))
stats.append({'epoch': epoch, 'acc_train': acc_train, 'loss': loss, 'acc_test': acc_test, 'f1_test': f1_test, 'cacc_test': cacc_test})
if epoch % args.save_nth_epoch == 0 or epoch==args.epochs-1:
with open(os.path.join(args.odir, 'trainlog.txt'), 'w') as outfile:
json.dump(stats, outfile)
torch.save({'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict()},
os.path.join(args.odir, 'model.pth.tar'))
if math.isnan(loss): break
if len(stats)>0:
with open(os.path.join(args.odir, 'trainlog.txt'), 'w') as outfile:
json.dump(stats, outfile)
acc_test, f1_test, cacc_test = eval(args.start_epoch)
print('-> Final test accuracy: {}, F1 score: {}, mean class accuracy: {}'.format(acc_test, f1_test, cacc_test))
def resume(args, dbinfo):
""" Loads model and optimizer state from a previous checkpoint. """
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model = create_model(checkpoint['args'], dbinfo) #use original arguments, architecture can't change
optimizer = create_optimizer(args, model)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch']
return model, optimizer
def create_model(args, dbinfo):
""" Creates model """
model = models.CloudNetwork(args.model_config, dbinfo['feats'], [dbinfo['edge_feats']] + args.fnet_widths, args.fnet_orthoinit, args.fnet_llbias, args.edge_mem_limit)
print('Total number of parameters: {}'.format(sum([p.numel() for p in model.parameters()])))
print(model)
if args.cuda:
model.cuda()
return model
def create_optimizer(args, model):
return optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.wd)
def seed(seed, cuda=True):
""" Sets seeds in all frameworks"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed(seed)
def lr_scheduler(optimizer, epoch, args, model):
""" Decreases learning rate at predefined steps"""
if epoch in args.lr_steps:
lr = args.lr * (args.lr_decay**(args.lr_steps.index(epoch)+1))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print('LR is set to {}'.format(lr))
return optimizer
def compute_F1(cm):
""" Computes mean F1 score from confusion matrix, weighted by class support (for Sydney) """
avgwf1 = 0
N = cm.shape[0]
f1 = np.zeros(N)
for i in range(N):
pr, re = cm[i][i] / max(1,np.sum(cm[:,i])), cm[i][i] / max(1,np.sum(cm[i]))
f1[i] = 2*pr*re/max(1,pr+re)
avgwf1 = avgwf1 + np.sum(cm[i]) * f1[i]
return avgwf1 / cm.sum()
def compute_class_acc(cm):
""" Computes mean class accuracy from confusion matrix (for ModelNet) """
re = 0
N = cm.shape[0]
for i in range(N):
re = re + cm[i][i] / max(1,np.sum(cm[i]))
return re/N*100
if __name__ == "__main__":
main()