forked from nianticlabs/monodepth2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_pose.py
134 lines (98 loc) · 4.74 KB
/
evaluate_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
from __future__ import absolute_import, division, print_function
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from layers import transformation_from_parameters
from utils import readlines
from options import MonodepthOptions
from datasets import KITTIOdomDataset
import networks
# from https://github.com/tinghuiz/SfMLearner
def dump_xyz(source_to_target_transformations):
xyzs = []
cam_to_world = np.eye(4)
xyzs.append(cam_to_world[:3, 3])
for source_to_target_transformation in source_to_target_transformations:
cam_to_world = np.dot(cam_to_world, source_to_target_transformation)
xyzs.append(cam_to_world[:3, 3])
return xyzs
# from https://github.com/tinghuiz/SfMLearner
def compute_ate(gtruth_xyz, pred_xyz_o):
# Make sure that the first matched frames align (no need for rotational alignment as
# all the predicted/ground-truth snippets have been converted to use the same coordinate
# system with the first frame of the snippet being the origin).
offset = gtruth_xyz[0] - pred_xyz_o[0]
pred_xyz = pred_xyz_o + offset[None, :]
# Optimize the scaling factor
scale = np.sum(gtruth_xyz * pred_xyz) / np.sum(pred_xyz ** 2)
alignment_error = pred_xyz * scale - gtruth_xyz
rmse = np.sqrt(np.sum(alignment_error ** 2)) / gtruth_xyz.shape[0]
return rmse
def evaluate(opt):
"""Evaluate odometry on the KITTI dataset
"""
assert os.path.isdir(opt.load_weights_folder), \
"Cannot find a folder at {}".format(opt.load_weights_folder)
assert opt.eval_split == "odom_9" or opt.eval_split == "odom_10", \
"eval_split should be either odom_9 or odom_10"
sequence_id = int(opt.eval_split.split("_")[1])
filenames = readlines(
os.path.join(os.path.dirname(__file__), "splits", "odom",
"test_files_{:02d}.txt".format(sequence_id)))
dataset = KITTIOdomDataset(opt.data_path, filenames, opt.height, opt.width,
[0, 1], 4, is_train=False)
dataloader = DataLoader(dataset, opt.batch_size, shuffle=False,
num_workers=opt.num_workers, pin_memory=True, drop_last=False)
pose_encoder_path = os.path.join(opt.load_weights_folder, "pose_encoder.pth")
pose_decoder_path = os.path.join(opt.load_weights_folder, "pose.pth")
pose_encoder = networks.ResnetEncoder(opt.num_layers, False, 2)
pose_encoder.load_state_dict(torch.load(pose_encoder_path))
pose_decoder = networks.PoseDecoder(pose_encoder.num_ch_enc, 1, 2)
pose_decoder.load_state_dict(torch.load(pose_decoder_path))
pose_encoder.cuda()
pose_encoder.eval()
pose_decoder.cuda()
pose_decoder.eval()
pred_poses = []
print("-> Computing pose predictions")
opt.frame_ids = [0, 1] # pose network only takes two frames as input
with torch.no_grad():
for inputs in dataloader:
for key, ipt in inputs.items():
inputs[key] = ipt.cuda()
all_color_aug = torch.cat([inputs[("color_aug", i, 0)] for i in opt.frame_ids], 1)
features = [pose_encoder(all_color_aug)]
axisangle, translation = pose_decoder(features)
pred_poses.append(
transformation_from_parameters(axisangle[:, 0], translation[:, 0]).cpu().numpy())
pred_poses = np.concatenate(pred_poses)
gt_poses_path = os.path.join(opt.data_path, "poses", "{:02d}.txt".format(sequence_id))
gt_global_poses = np.loadtxt(gt_poses_path).reshape(-1, 3, 4)
gt_global_poses = np.concatenate(
(gt_global_poses, np.zeros((gt_global_poses.shape[0], 1, 4))), 1)
gt_global_poses[:, 3, 3] = 1
gt_xyzs = gt_global_poses[:, :3, 3]
gt_local_poses = []
for i in range(1, len(gt_global_poses)):
gt_local_poses.append(
np.linalg.inv(np.dot(np.linalg.inv(gt_global_poses[i - 1]), gt_global_poses[i])))
ates = []
num_frames = gt_xyzs.shape[0]
track_length = 5
for i in range(0, num_frames - 1):
local_xyzs = np.array(dump_xyz(pred_poses[i:i + track_length - 1]))
gt_local_xyzs = np.array(dump_xyz(gt_local_poses[i:i + track_length - 1]))
ates.append(compute_ate(gt_local_xyzs, local_xyzs))
print("\n Trajectory error: {:0.3f}, std: {:0.3f}\n".format(np.mean(ates), np.std(ates)))
save_path = os.path.join(opt.load_weights_folder, "poses.npy")
np.save(save_path, pred_poses)
print("-> Predictions saved to", save_path)
if __name__ == "__main__":
options = MonodepthOptions()
evaluate(options.parse())