-
Notifications
You must be signed in to change notification settings - Fork 1
/
video_transforms.py
108 lines (90 loc) · 3.49 KB
/
video_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torchvision
import math
import random
import numbers
import numpy as np
from PIL import Image, ImageOps, ImageEnhance
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, clip):
for t in self.transforms:
clip = t(clip)
return clip
class Resize(object):
def __init__(self, size, interpolation=Image.BILINEAR):
self.worker = torchvision.transforms.Resize(size, interpolation)
def __call__(self, img_group):
return [self.worker(img) for img in img_group]
class CenterCrop(object):
def __init__(self, size):
self.worker = torchvision.transforms.CenterCrop(size)
def __call__(self, img_group):
return [self.worker(img) for img in img_group]
class RandomHorizontalFlip(object):
def __init__(self, is_flow=False):
self.is_flow = is_flow
def __call__(self, img_group, is_flow=False):
v = random.random()
if v < 0.5:
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
if self.is_flow:
for i in range(0, len(ret), 2):
ret[i] = ImageOps.invert(ret[i])
return ret
else:
return img_group
class RandomResizedCrop(object):
def __init__(self, size, interpolation=Image.BILINEAR):
self.size = size
self.interpolation = interpolation
def __call__(self, img_group):
for attempt in range(10):
area = img_group[0].size[0] * img_group[0].size[1]
target_area = random.uniform(0.08, 1.0) * area
aspect_ratio = random.uniform(3. / 4, 4. / 3)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img_group[0].size[0] and h <= img_group[0].size[1]:
x1 = random.randint(0, img_group[0].size[0] - w)
y1 = random.randint(0, img_group[0].size[1] - h)
found = True
break
else:
found = False
x1 = 0
y1 = 0
if found:
out_group = list()
for img in img_group:
img = img.crop((x1, y1, x1 + w, y1 + h))
assert(img.size == (w, h))
out_group.append(img.resize((self.size, self.size), self.interpolation))
return out_group
else:
scale = Resize(self.size, interpolation=self.interpolation)
return scale(img_group)
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
rep_mean = self.mean * (tensor.size()[1])
rep_std = self.std * (tensor.size()[1])
tensor = tensor.contiguous().view(-1,160,160)
for t, m, s in zip(tensor, rep_mean, rep_std):
t.sub_(m).div_(s)
tensor = tensor.view(-1,3,160,160)
return tensor
class ToTensor(object):
def __init__(self):
self.worker = torchvision.transforms.ToTensor()
def __call__(self, img_group):
img_group = [self.worker(img) for img in img_group]
img_group = [img.numpy() for img in img_group ]
img_group = np.array(img_group)
img_group = torch.from_numpy(img_group)
return img_group