Skip to content

Implementation code when learning deep reinforcement learning

License

Notifications You must be signed in to change notification settings

DarriusL/DRL-ExampleCode

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

71 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DRL-ExampleCode

Implementation code when learning deep reinforcement learning code.

Environment configuration

git clone https://github.com/DarriusL/DRL-ExampleCode.git
cd DRL-ExampleCode
conda env create -f env.yml
conda activate dev

Framework file structure

├── .gitignore
├── agent
│	├── algorithm
│	│	├── actor_critic.py
│	│	├── alg_util.py
│	│	├── base.py
│	│	├── dqn.py
│	│	├── reinforce.py
│	│	├── sarsa.py
│	│	└── __init__.py
│	├── memory
│	│	├── base.py
│	│	├── offpolicy.py
│	│	├── onpolicy.py
│	│	└── __init__.py
│	└── net
│		├── base.py
│		├── mlp.py
│		├── net_util.py
│		└── __init__.py
├── config
│	├── a2c
│	│	└── a2c_nstep_cartpole_on.json
│	├── dqn
│	│	├── doubledqn_cartpole_off.json
│	│	├── doubledqn_cartpole_per.json
│	│	├── dqn_cartpole_off.json
│	│	└── targetdqn_cartpole_off.json
│	├── lab_cfg.json
│	├── reinforce
│	│	├── reinforce_cartpole_mc.json
│	│	├── reinforce_entropyreg_cartpole_mc.json
│	│	└── reinforce_entropyreg_cartpole_nstep.json
│	└── sarsa
│		├── sarsa_cartpole_mc.json
│		└── sarsa_cartpole_nstep.json
├── env
│	├── base.py
│	├── openai_gym.py
│	└── __init__.py
├── env.yml
├── executor.py
├── lib
│	├── callback.py
│	├── glb_var.py
│	├── json_util.py
│	└── util.py
├── LICENSE
├── README.md
└── room
	├── system
	│	├── base.py
	│	├── offpolicy.py
	│	├── onpolicy.py
	│	└── __init__.py
	└── work.py

Command

usage

usage: executor.py [-h] [--config CONFIG] [--mode MODE] [--dev DEV]

option

options:
  -h, --help            show this help message and exit
  --config CONFIG, -cfg CONFIG
                        Path of configration.
  --mode MODE           Mode of operation.(train/test)
  --dev DEV             Enable code debugging

qiuck start

  • reinforce
python executor.py -cfg='./config/reinforce/reinforce_cartpole_mc.json' --mode='train'
python executor.py -cfg='./config/reinforce/reinforce_entropyreg_cartpole_mc.json' --mode='train'
python executor.py -cfg='./config/reinforce/reinforce_entropyreg_cartpole_onbatch.json' --mode='train'
python executor.py -cfg='./cache/data/reinforce/cartpole/[-opt-]/config.json' --mode='test'

python executor.py -cfg='./config/reinforce/reinforce_mountaincar_mc.json' --mode='train'
  • sarsa
python executor.py -cfg='./config/sarsa/sarsa_cartpole_onbatch.json' --mode='train'
python executor.py -cfg='./config/sarsa/sarsa_cartpole_mc.json' --mode='train'
python executor.py -cfg='./cache/data/sarsa/cartpole/[-opt-]/config.json' --mode='test'
  • dqn
python executor.py -cfg='./config/dqn/dqn_cartpole_off.json' --mode='train'
python executor.py -cfg='./config/dqn/targetdqn_cartpole_off.json' --mode='train'
python executor.py -cfg='./config/dqn/doubledqn_cartpole_off.json' --mode='train'
python executor.py -cfg='./config/dqn/doubledqn_cartpole_per.json' --mode='train'

python executor.py -cfg='./config/dqn/dqn_mountaincar_off.json' --mode='train'
  • a2c
python executor.py -cfg='./config/a2c/a2c_shared_nstep_cartpole_onbatch.json' --mode='train'
python executor.py -cfg='./config/a2c/a2c_shared_mc_cartpole_mc.json' --mode='train'
python executor.py -cfg='./config/a2c/a2c_unshared_gae_cartpole_onbatch.json' --mode='train'
python executor.py -cfg='./cache/data/a2c/cartpole/[-opt-]/config.json' --mode='test'

python executor.py -cfg='./config/a2c/a2c_shared_nstep_mountaincar_onbatch.json' --mode='train'

python executor.py -cfg='./config/a2c/a2c_unshared_gae_pong_onbatch.json' --mode='train'
  • ppo

notes:A2C (PPO) using nstep calculation advantage may cause model parameters to be nan due to gradient disappearance or gradient explosion, so the model is limited to GAE calculation.

python executor.py -cfg='./config/ppo/reinforce_ppo_cartpole_mc.json' --mode='train'
python executor.py -cfg='./config/ppo/reinforce_ppo_cartpole_onbatch.json' --mode='train'

python executor.py -cfg='./config/ppo/a2c_ppo_shared_gae_cartpole_onbatch.json' --mode='train'
python executor.py -cfg='./config/ppo/a2c_ppo_unshared_gae_cartpole_onbatch.json' --mode='train'
python executor.py -cfg='./cache/data/ppo_a2c/cartpole/[-opt-]/config.json' --mode='test'

python executor.py -cfg='./config/ppo/a3c_ppo_shared_gae_cartpole_onbatch.json' --mode='train'
python executor.py -cfg='./config/ppo/a3c_ppo_unshared_gae_cartpole_onbatch.json' --mode='train'
  • a3c
python executor.py -cfg='./config/a3c/a3c_shared_nstep_cartpole_onbatch.json' --mode='train'
python executor.py -cfg='./config/a3c/a3c_unshared_gae_cartpole_onbatch.json' --mode='train'
python executor.py -cfg='./cache/data/a3c/cartpole/shared_nstep_t100000/config.json' --mode='test'
  • acktr

The effect is poor, and it will be improved in the future.

python executor.py -cfg='./config/acktr/acktr_shared_nstep_cartpole_onbatch.json' --mode='train'

Refrence

[1]Graesser, L., Keng, W. L., & Gupta, A. (2021). Foundations of Deep Reinforcement Learning: Theory and Practice in Python. Apress.

[2]Kengz. (2019). SLM-Lab: Modular Deep Reinforcement Learning framework in PyTorch [GitHub repository]. https://github.com/kengz/SLM-Lab

[3]Kostrikov, Ilya. PyTorch A3C. GitHub, July 9, 2018, https://github.com/ikostrikov/pytorch-a3c.