This repository contains a collection of Matlab implementations of resonance-based low-regularity integrators and related methods that were studied over the course of the MSCA project GLIMPSE. The main routines can be found in src/resonance_based_schemes
and examples illustrating the application of these methods as used in the below mentioned papers are provided in examples/
. To run the examples please first run src/set_paths.m
.
A good starting point to familiarise yourself with the code is given in examples/introductory_example/
where you can start by running convergence_experiments_nls.m
followed by plotting.m
.
If you use this code in an academic paper, please cite [1], [2], [3], [4]:
@misc{maierhofer2022symplectic, title={Bridging the gap: symplecticity and low regularity in {R}unge--{K}utta resonance-based schemes}, author={Georg Maierhofer and Katharina Schratz}, year={2022}, eprint={2205.05024}, archivePrefix={arXiv}, primaryClass={math.NA} } @misc{alamabronsard2023symmetric, title={Symmetric resonance based integrators and forest formulae}, author={Yvonne Alama Bronsard and Yvain Bruned and Georg Maierhofer and Katharina Schratz}, year={2023}, eprint={2305.16737}, archivePrefix={arXiv}, primaryClass={math.NA} } @misc{banica2022schroedingermaps, title={Numerical integration of {S}chr\"odinger maps via the {H}asimoto transform}, author={Valeria Banica and Georg Maierhofer and Katharina Schratz}, year={2022}, eprint={2211.01282}, archivePrefix={arXiv}, primaryClass={math.NA} } @misc{feng2023longtime, title={Long-time error bounds of low-regularity integrators for nonlinear {S}chr\"odinger equations}, author={Yue Feng and Georg Maierhofer and Katharina Schratz}, year={2023}, eprint={2302.00383}, archivePrefix={arXiv}, primaryClass={math.NA} }
[1] | Maierhofer, G. and Schratz, K., “Bridging the gap: symplecticity and low regularity in Runge-Kutta resonance-based schemes”, 2022. arXiv.2205.05024. |
[2] | Alama Bronsard, Y., Bruned, Y., Maierhofer, G. and Schratz, K., “Symmetric resonance based integrators and forest formulae”, 2023. arXiv.2305.16737. |
[3] | Banica, V., Maierhofer, G. and Schratz, K., “Numerical integration of Schrödinger maps via the {H}asimoto transform”, 2022. arXiv.2211.01282, to appear in SIAM J. Numer. Anal. |
[4] | Feng, Y., Maierhofer, G. and Schratz, K., “Long-time error bounds of low-regularity integrators for nonlinear Schrödinger equations”, 2023. arXiv.2302.00383, to appear in Math. Comput. |