-
Notifications
You must be signed in to change notification settings - Fork 210
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #279 from alo7lika/main
Customer Clust - Customer Segmentation Tool
- Loading branch information
Showing
10 changed files
with
2,195 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
|
Large diffs are not rendered by default.
Oops, something went wrong.
571 changes: 571 additions & 0 deletions
571
...omer Clust - Customer Segmentation Tool/Customer Clust - Customer Segmentation Tool.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file added
BIN
+711 KB
...tomer Clust - Customer Segmentation Tool/Customer Clust - Segmentation Tool.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
201 changes: 201 additions & 0 deletions
201
Machine_Learning/Customer Clust - Customer Segmentation Tool/Mall_Customers.csv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
CustomerID,Genre,Age,Annual Income (k$),Spending Score (1-100) | ||
0001,Male,19,15,39 | ||
0002,Male,21,15,81 | ||
0003,Female,20,16,6 | ||
0004,Female,23,16,77 | ||
0005,Female,31,17,40 | ||
0006,Female,22,17,76 | ||
0007,Female,35,18,6 | ||
0008,Female,23,18,94 | ||
0009,Male,64,19,3 | ||
0010,Female,30,19,72 | ||
0011,Male,67,19,14 | ||
0012,Female,35,19,99 | ||
0013,Female,58,20,15 | ||
0014,Female,24,20,77 | ||
0015,Male,37,20,13 | ||
0016,Male,22,20,79 | ||
0017,Female,35,21,35 | ||
0018,Male,20,21,66 | ||
0019,Male,52,23,29 | ||
0020,Female,35,23,98 | ||
0021,Male,35,24,35 | ||
0022,Male,25,24,73 | ||
0023,Female,46,25,5 | ||
0024,Male,31,25,73 | ||
0025,Female,54,28,14 | ||
0026,Male,29,28,82 | ||
0027,Female,45,28,32 | ||
0028,Male,35,28,61 | ||
0029,Female,40,29,31 | ||
0030,Female,23,29,87 | ||
0031,Male,60,30,4 | ||
0032,Female,21,30,73 | ||
0033,Male,53,33,4 | ||
0034,Male,18,33,92 | ||
0035,Female,49,33,14 | ||
0036,Female,21,33,81 | ||
0037,Female,42,34,17 | ||
0038,Female,30,34,73 | ||
0039,Female,36,37,26 | ||
0040,Female,20,37,75 | ||
0041,Female,65,38,35 | ||
0042,Male,24,38,92 | ||
0043,Male,48,39,36 | ||
0044,Female,31,39,61 | ||
0045,Female,49,39,28 | ||
0046,Female,24,39,65 | ||
0047,Female,50,40,55 | ||
0048,Female,27,40,47 | ||
0049,Female,29,40,42 | ||
0050,Female,31,40,42 | ||
0051,Female,49,42,52 | ||
0052,Male,33,42,60 | ||
0053,Female,31,43,54 | ||
0054,Male,59,43,60 | ||
0055,Female,50,43,45 | ||
0056,Male,47,43,41 | ||
0057,Female,51,44,50 | ||
0058,Male,69,44,46 | ||
0059,Female,27,46,51 | ||
0060,Male,53,46,46 | ||
0061,Male,70,46,56 | ||
0062,Male,19,46,55 | ||
0063,Female,67,47,52 | ||
0064,Female,54,47,59 | ||
0065,Male,63,48,51 | ||
0066,Male,18,48,59 | ||
0067,Female,43,48,50 | ||
0068,Female,68,48,48 | ||
0069,Male,19,48,59 | ||
0070,Female,32,48,47 | ||
0071,Male,70,49,55 | ||
0072,Female,47,49,42 | ||
0073,Female,60,50,49 | ||
0074,Female,60,50,56 | ||
0075,Male,59,54,47 | ||
0076,Male,26,54,54 | ||
0077,Female,45,54,53 | ||
0078,Male,40,54,48 | ||
0079,Female,23,54,52 | ||
0080,Female,49,54,42 | ||
0081,Male,57,54,51 | ||
0082,Male,38,54,55 | ||
0083,Male,67,54,41 | ||
0084,Female,46,54,44 | ||
0085,Female,21,54,57 | ||
0086,Male,48,54,46 | ||
0087,Female,55,57,58 | ||
0088,Female,22,57,55 | ||
0089,Female,34,58,60 | ||
0090,Female,50,58,46 | ||
0091,Female,68,59,55 | ||
0092,Male,18,59,41 | ||
0093,Male,48,60,49 | ||
0094,Female,40,60,40 | ||
0095,Female,32,60,42 | ||
0096,Male,24,60,52 | ||
0097,Female,47,60,47 | ||
0098,Female,27,60,50 | ||
0099,Male,48,61,42 | ||
0100,Male,20,61,49 | ||
0101,Female,23,62,41 | ||
0102,Female,49,62,48 | ||
0103,Male,67,62,59 | ||
0104,Male,26,62,55 | ||
0105,Male,49,62,56 | ||
0106,Female,21,62,42 | ||
0107,Female,66,63,50 | ||
0108,Male,54,63,46 | ||
0109,Male,68,63,43 | ||
0110,Male,66,63,48 | ||
0111,Male,65,63,52 | ||
0112,Female,19,63,54 | ||
0113,Female,38,64,42 | ||
0114,Male,19,64,46 | ||
0115,Female,18,65,48 | ||
0116,Female,19,65,50 | ||
0117,Female,63,65,43 | ||
0118,Female,49,65,59 | ||
0119,Female,51,67,43 | ||
0120,Female,50,67,57 | ||
0121,Male,27,67,56 | ||
0122,Female,38,67,40 | ||
0123,Female,40,69,58 | ||
0124,Male,39,69,91 | ||
0125,Female,23,70,29 | ||
0126,Female,31,70,77 | ||
0127,Male,43,71,35 | ||
0128,Male,40,71,95 | ||
0129,Male,59,71,11 | ||
0130,Male,38,71,75 | ||
0131,Male,47,71,9 | ||
0132,Male,39,71,75 | ||
0133,Female,25,72,34 | ||
0134,Female,31,72,71 | ||
0135,Male,20,73,5 | ||
0136,Female,29,73,88 | ||
0137,Female,44,73,7 | ||
0138,Male,32,73,73 | ||
0139,Male,19,74,10 | ||
0140,Female,35,74,72 | ||
0141,Female,57,75,5 | ||
0142,Male,32,75,93 | ||
0143,Female,28,76,40 | ||
0144,Female,32,76,87 | ||
0145,Male,25,77,12 | ||
0146,Male,28,77,97 | ||
0147,Male,48,77,36 | ||
0148,Female,32,77,74 | ||
0149,Female,34,78,22 | ||
0150,Male,34,78,90 | ||
0151,Male,43,78,17 | ||
0152,Male,39,78,88 | ||
0153,Female,44,78,20 | ||
0154,Female,38,78,76 | ||
0155,Female,47,78,16 | ||
0156,Female,27,78,89 | ||
0157,Male,37,78,1 | ||
0158,Female,30,78,78 | ||
0159,Male,34,78,1 | ||
0160,Female,30,78,73 | ||
0161,Female,56,79,35 | ||
0162,Female,29,79,83 | ||
0163,Male,19,81,5 | ||
0164,Female,31,81,93 | ||
0165,Male,50,85,26 | ||
0166,Female,36,85,75 | ||
0167,Male,42,86,20 | ||
0168,Female,33,86,95 | ||
0169,Female,36,87,27 | ||
0170,Male,32,87,63 | ||
0171,Male,40,87,13 | ||
0172,Male,28,87,75 | ||
0173,Male,36,87,10 | ||
0174,Male,36,87,92 | ||
0175,Female,52,88,13 | ||
0176,Female,30,88,86 | ||
0177,Male,58,88,15 | ||
0178,Male,27,88,69 | ||
0179,Male,59,93,14 | ||
0180,Male,35,93,90 | ||
0181,Female,37,97,32 | ||
0182,Female,32,97,86 | ||
0183,Male,46,98,15 | ||
0184,Female,29,98,88 | ||
0185,Female,41,99,39 | ||
0186,Male,30,99,97 | ||
0187,Female,54,101,24 | ||
0188,Male,28,101,68 | ||
0189,Female,41,103,17 | ||
0190,Female,36,103,85 | ||
0191,Female,34,103,23 | ||
0192,Female,32,103,69 | ||
0193,Male,33,113,8 | ||
0194,Female,38,113,91 | ||
0195,Female,47,120,16 | ||
0196,Female,35,120,79 | ||
0197,Female,45,126,28 | ||
0198,Male,32,126,74 | ||
0199,Male,32,137,18 | ||
0200,Male,30,137,83 |
109 changes: 109 additions & 0 deletions
109
Machine_Learning/Customer Clust - Customer Segmentation Tool/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
# 🛍️ Customer Clust - Customer Segmentation Tool | ||
|
||
<p align="center"> | ||
<img src="https://raw.githubusercontent.com/alo7lika/PyVerse/refs/heads/main/Machine_Learning/Customer%20Clust%20-%20Customer%20Segmentation%20Tool/Customer%20Clust%20-%20Segmentation%20Tool.png" alt="Customer Clust Segmentation Tool" width="600"/> | ||
</p> | ||
|
||
|
||
## 📚 Table of Contents | ||
1. [Overview](#-overview) | ||
2. [Features](#-features) | ||
3. [How It Works](#-how-it-works) | ||
4. [Tech Stack](#-tech-stack) | ||
5. [Installation](#-installation) | ||
6. [Usage](#-usage) | ||
7. [Visualizations](#-visualizations) | ||
8. [Machine Learning Models](#-machine-learning-models) | ||
9. [Goals](#-goals) | ||
10. [License](#-license) | ||
11. [Contact](#-contact) | ||
|
||
|
||
## 📋 Overview | ||
Customer Clust is a powerful customer segmentation tool designed to categorize customers based on their purchasing behavior, preferences, and demographic characteristics. By leveraging advanced data analytics and machine learning techniques, this tool helps businesses: | ||
|
||
- 📈 Enhance marketing strategies | ||
- 🧠 Improve customer understanding | ||
- ⚙️ Optimize resource allocation | ||
- 🚀 Drive business growth | ||
- 💡 Foster a data-driven culture | ||
|
||
## 🔍 Features | ||
- **Segmentation**: Classifies customers into distinct groups for targeted marketing. | ||
- **Behavioral Insights**: Provides valuable insights into customer preferences and purchasing habits. | ||
- **Visualization**: Interactive charts and graphs for easy interpretation of customer segments. | ||
- **Advanced Metrics**: Incorporates KPIs to measure the impact of different segments on business growth. | ||
|
||
## 🧑💻 How It Works | ||
1. **Data Collection**: Input customer purchase history, preferences, and demographic data. | ||
2. **Data Preprocessing**: Clean and preprocess the data for machine learning models. | ||
3. **Modeling**: Apply clustering algorithms like K-Means or Hierarchical Clustering to identify customer groups. | ||
4. **Evaluation**: Analyze the results using metrics like silhouette score or within-cluster sum of squares (WCSS). | ||
5. **Visualization**: Visualize the segmentation results using intuitive dashboards. | ||
|
||
## 🛠️ Tech Stack | ||
- **Languages**: Python 🐍 | ||
- **Libraries**: | ||
- pandas 📊 | ||
- numpy 🔢 | ||
- scikit-learn 📚 | ||
- matplotlib 📉 | ||
- seaborn 📈 | ||
|
||
## 🚀 Getting Started | ||
|
||
### Prerequisites | ||
- Python 3.8+ | ||
- Jupyter Notebook | ||
- Required libraries in `requirements.txt` | ||
|
||
### Installation | ||
Clone this repository: | ||
```bash | ||
git clone https://github.com/yourusername/Customer_Clust.git | ||
cd Customer_Clust | ||
``` | ||
Install the necessary dependencies: | ||
|
||
```bash | ||
pip install -r requirements.txt | ||
``` | ||
### Usage | ||
Run the Jupyter notebook to explore the data and generate customer segments: | ||
|
||
```bash | ||
jupyter notebook notebooks/Customer_Segmentation.ipynb | ||
``` | ||
To run the segmentation pipeline as a script: | ||
|
||
```bash | ||
python scripts/segment_customers.py | ||
``` | ||
|
||
## 📊 Visualizations | ||
The tool provides insightful visualizations to help you understand customer clusters and trends, such as: | ||
|
||
- 📉 **Purchase trends over time** | ||
- 🧩 **Segmented customer behavior** | ||
- 🗺️ **Demographic distribution maps** | ||
- 🎯 **Targeted marketing groupings** | ||
|
||
## 🧠 Machine Learning Models | ||
Customer Clust uses unsupervised learning techniques, primarily focusing on: | ||
|
||
- **K-Means Clustering**: For grouping customers into meaningful clusters. | ||
- **Hierarchical Clustering**: To provide more granular segmentation if needed. | ||
|
||
## 🏆 Goals | ||
- Improve customer retention and acquisition. | ||
- Maximize marketing campaign efficiency. | ||
- Tailor product recommendations to specific customer segments. | ||
|
||
## 🛡️ License | ||
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. | ||
|
||
## 💬 Contact | ||
For more information or queries, feel free to contact the project maintainers at: [alolikabhowmik72@gmail.com] | ||
|
||
Happy clustering! 🎉 | ||
|
Oops, something went wrong.