Skip to content

Commit

Permalink
Merge pull request #279 from alo7lika/main
Browse files Browse the repository at this point in the history
Customer Clust - Customer Segmentation Tool
  • Loading branch information
UTSAVS26 authored Oct 8, 2024
2 parents ba1aa43 + 51ac204 commit 92bc784
Show file tree
Hide file tree
Showing 10 changed files with 2,195 additions and 0 deletions.
1 change: 1 addition & 0 deletions Customer Clust - Customer Segmentation Tool
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@

571 changes: 571 additions & 0 deletions Customer Clust - Customer Segmentation Tool.ipynb

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
CustomerID,Genre,Age,Annual Income (k$),Spending Score (1-100)
0001,Male,19,15,39
0002,Male,21,15,81
0003,Female,20,16,6
0004,Female,23,16,77
0005,Female,31,17,40
0006,Female,22,17,76
0007,Female,35,18,6
0008,Female,23,18,94
0009,Male,64,19,3
0010,Female,30,19,72
0011,Male,67,19,14
0012,Female,35,19,99
0013,Female,58,20,15
0014,Female,24,20,77
0015,Male,37,20,13
0016,Male,22,20,79
0017,Female,35,21,35
0018,Male,20,21,66
0019,Male,52,23,29
0020,Female,35,23,98
0021,Male,35,24,35
0022,Male,25,24,73
0023,Female,46,25,5
0024,Male,31,25,73
0025,Female,54,28,14
0026,Male,29,28,82
0027,Female,45,28,32
0028,Male,35,28,61
0029,Female,40,29,31
0030,Female,23,29,87
0031,Male,60,30,4
0032,Female,21,30,73
0033,Male,53,33,4
0034,Male,18,33,92
0035,Female,49,33,14
0036,Female,21,33,81
0037,Female,42,34,17
0038,Female,30,34,73
0039,Female,36,37,26
0040,Female,20,37,75
0041,Female,65,38,35
0042,Male,24,38,92
0043,Male,48,39,36
0044,Female,31,39,61
0045,Female,49,39,28
0046,Female,24,39,65
0047,Female,50,40,55
0048,Female,27,40,47
0049,Female,29,40,42
0050,Female,31,40,42
0051,Female,49,42,52
0052,Male,33,42,60
0053,Female,31,43,54
0054,Male,59,43,60
0055,Female,50,43,45
0056,Male,47,43,41
0057,Female,51,44,50
0058,Male,69,44,46
0059,Female,27,46,51
0060,Male,53,46,46
0061,Male,70,46,56
0062,Male,19,46,55
0063,Female,67,47,52
0064,Female,54,47,59
0065,Male,63,48,51
0066,Male,18,48,59
0067,Female,43,48,50
0068,Female,68,48,48
0069,Male,19,48,59
0070,Female,32,48,47
0071,Male,70,49,55
0072,Female,47,49,42
0073,Female,60,50,49
0074,Female,60,50,56
0075,Male,59,54,47
0076,Male,26,54,54
0077,Female,45,54,53
0078,Male,40,54,48
0079,Female,23,54,52
0080,Female,49,54,42
0081,Male,57,54,51
0082,Male,38,54,55
0083,Male,67,54,41
0084,Female,46,54,44
0085,Female,21,54,57
0086,Male,48,54,46
0087,Female,55,57,58
0088,Female,22,57,55
0089,Female,34,58,60
0090,Female,50,58,46
0091,Female,68,59,55
0092,Male,18,59,41
0093,Male,48,60,49
0094,Female,40,60,40
0095,Female,32,60,42
0096,Male,24,60,52
0097,Female,47,60,47
0098,Female,27,60,50
0099,Male,48,61,42
0100,Male,20,61,49
0101,Female,23,62,41
0102,Female,49,62,48
0103,Male,67,62,59
0104,Male,26,62,55
0105,Male,49,62,56
0106,Female,21,62,42
0107,Female,66,63,50
0108,Male,54,63,46
0109,Male,68,63,43
0110,Male,66,63,48
0111,Male,65,63,52
0112,Female,19,63,54
0113,Female,38,64,42
0114,Male,19,64,46
0115,Female,18,65,48
0116,Female,19,65,50
0117,Female,63,65,43
0118,Female,49,65,59
0119,Female,51,67,43
0120,Female,50,67,57
0121,Male,27,67,56
0122,Female,38,67,40
0123,Female,40,69,58
0124,Male,39,69,91
0125,Female,23,70,29
0126,Female,31,70,77
0127,Male,43,71,35
0128,Male,40,71,95
0129,Male,59,71,11
0130,Male,38,71,75
0131,Male,47,71,9
0132,Male,39,71,75
0133,Female,25,72,34
0134,Female,31,72,71
0135,Male,20,73,5
0136,Female,29,73,88
0137,Female,44,73,7
0138,Male,32,73,73
0139,Male,19,74,10
0140,Female,35,74,72
0141,Female,57,75,5
0142,Male,32,75,93
0143,Female,28,76,40
0144,Female,32,76,87
0145,Male,25,77,12
0146,Male,28,77,97
0147,Male,48,77,36
0148,Female,32,77,74
0149,Female,34,78,22
0150,Male,34,78,90
0151,Male,43,78,17
0152,Male,39,78,88
0153,Female,44,78,20
0154,Female,38,78,76
0155,Female,47,78,16
0156,Female,27,78,89
0157,Male,37,78,1
0158,Female,30,78,78
0159,Male,34,78,1
0160,Female,30,78,73
0161,Female,56,79,35
0162,Female,29,79,83
0163,Male,19,81,5
0164,Female,31,81,93
0165,Male,50,85,26
0166,Female,36,85,75
0167,Male,42,86,20
0168,Female,33,86,95
0169,Female,36,87,27
0170,Male,32,87,63
0171,Male,40,87,13
0172,Male,28,87,75
0173,Male,36,87,10
0174,Male,36,87,92
0175,Female,52,88,13
0176,Female,30,88,86
0177,Male,58,88,15
0178,Male,27,88,69
0179,Male,59,93,14
0180,Male,35,93,90
0181,Female,37,97,32
0182,Female,32,97,86
0183,Male,46,98,15
0184,Female,29,98,88
0185,Female,41,99,39
0186,Male,30,99,97
0187,Female,54,101,24
0188,Male,28,101,68
0189,Female,41,103,17
0190,Female,36,103,85
0191,Female,34,103,23
0192,Female,32,103,69
0193,Male,33,113,8
0194,Female,38,113,91
0195,Female,47,120,16
0196,Female,35,120,79
0197,Female,45,126,28
0198,Male,32,126,74
0199,Male,32,137,18
0200,Male,30,137,83
109 changes: 109 additions & 0 deletions Machine_Learning/Customer Clust - Customer Segmentation Tool/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
# 🛍️ Customer Clust - Customer Segmentation Tool

<p align="center">
<img src="https://raw.githubusercontent.com/alo7lika/PyVerse/refs/heads/main/Machine_Learning/Customer%20Clust%20-%20Customer%20Segmentation%20Tool/Customer%20Clust%20-%20Segmentation%20Tool.png" alt="Customer Clust Segmentation Tool" width="600"/>
</p>


## 📚 Table of Contents
1. [Overview](#-overview)
2. [Features](#-features)
3. [How It Works](#-how-it-works)
4. [Tech Stack](#-tech-stack)
5. [Installation](#-installation)
6. [Usage](#-usage)
7. [Visualizations](#-visualizations)
8. [Machine Learning Models](#-machine-learning-models)
9. [Goals](#-goals)
10. [License](#-license)
11. [Contact](#-contact)


## 📋 Overview
Customer Clust is a powerful customer segmentation tool designed to categorize customers based on their purchasing behavior, preferences, and demographic characteristics. By leveraging advanced data analytics and machine learning techniques, this tool helps businesses:

- 📈 Enhance marketing strategies
- 🧠 Improve customer understanding
- ⚙️ Optimize resource allocation
- 🚀 Drive business growth
- 💡 Foster a data-driven culture

## 🔍 Features
- **Segmentation**: Classifies customers into distinct groups for targeted marketing.
- **Behavioral Insights**: Provides valuable insights into customer preferences and purchasing habits.
- **Visualization**: Interactive charts and graphs for easy interpretation of customer segments.
- **Advanced Metrics**: Incorporates KPIs to measure the impact of different segments on business growth.

## 🧑‍💻 How It Works
1. **Data Collection**: Input customer purchase history, preferences, and demographic data.
2. **Data Preprocessing**: Clean and preprocess the data for machine learning models.
3. **Modeling**: Apply clustering algorithms like K-Means or Hierarchical Clustering to identify customer groups.
4. **Evaluation**: Analyze the results using metrics like silhouette score or within-cluster sum of squares (WCSS).
5. **Visualization**: Visualize the segmentation results using intuitive dashboards.

## 🛠️ Tech Stack
- **Languages**: Python 🐍
- **Libraries**:
- pandas 📊
- numpy 🔢
- scikit-learn 📚
- matplotlib 📉
- seaborn 📈

## 🚀 Getting Started

### Prerequisites
- Python 3.8+
- Jupyter Notebook
- Required libraries in `requirements.txt`

### Installation
Clone this repository:
```bash
git clone https://github.com/yourusername/Customer_Clust.git
cd Customer_Clust
```
Install the necessary dependencies:

```bash
pip install -r requirements.txt
```
### Usage
Run the Jupyter notebook to explore the data and generate customer segments:

```bash
jupyter notebook notebooks/Customer_Segmentation.ipynb
```
To run the segmentation pipeline as a script:

```bash
python scripts/segment_customers.py
```

## 📊 Visualizations
The tool provides insightful visualizations to help you understand customer clusters and trends, such as:

- 📉 **Purchase trends over time**
- 🧩 **Segmented customer behavior**
- 🗺️ **Demographic distribution maps**
- 🎯 **Targeted marketing groupings**

## 🧠 Machine Learning Models
Customer Clust uses unsupervised learning techniques, primarily focusing on:

- **K-Means Clustering**: For grouping customers into meaningful clusters.
- **Hierarchical Clustering**: To provide more granular segmentation if needed.

## 🏆 Goals
- Improve customer retention and acquisition.
- Maximize marketing campaign efficiency.
- Tailor product recommendations to specific customer segments.

## 🛡️ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## 💬 Contact
For more information or queries, feel free to contact the project maintainers at: [alolikabhowmik72@gmail.com]

Happy clustering! 🎉

Loading

0 comments on commit 92bc784

Please sign in to comment.