-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of https://github.com/ajsteinmetz/plasma-partition
- Loading branch information
Showing
14 changed files
with
230 additions
and
33 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
\documentclass[onecolumn,preprintnumbers,amsmath,amssymb]{revtex4} | ||
\usepackage{graphicx} | ||
\usepackage{float} | ||
\usepackage[usenames,dvipsnames]{color} | ||
|
||
\begin{document} | ||
%\preprint{Draft.13} | ||
\title{Fluctuation of Magnetization} | ||
\author{Cheng Tao Yang$^a$, Andrew Steinmetz$^a$, Johann Rafelski$^a$} | ||
\affiliation{$^a$Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA} | ||
\date{\today} | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
\begin{abstract} | ||
\end{abstract} | ||
\maketitle | ||
|
||
\section{Statistical fluctuation of magnetization} | ||
In general, given the magnetic moment $\mu$ the magnetization density of the quantum system is defined as | ||
\begin{align} | ||
\langle M\rangle\equiv\frac{1}{V}\langle \mu\rangle=\frac{1}{V}\left(T\frac{\partial \ln\mathcal Z}{\partial B}\right),\qquad \langle\mu\rangle=\left(T\frac{\partial \ln\mathcal Z}{\partial B}\right) | ||
\end{align} | ||
In statistical mechanical, the mean-square fluctuation of any quantity magnetic moment $\mu$ can be written as | ||
\begin{align} | ||
\langle\Delta \mu^2\rangle=\langle \mu^2\rangle-\langle \mu\rangle^2=T^2\frac{\partial^2 \ln\mathcal Z }{\partial B^2} | ||
\end{align} | ||
In this scenario, the fluctuation of magnetization can be written as | ||
\begin{align} | ||
{\langle\Delta M^2\rangle}=\frac{\langle\Delta \mu^2\rangle}{V}=\frac{T^2}{V}\frac{\partial^2 \ln\mathcal Z }{\partial B^2}=T\frac{\partial}{\partial B}\left(\frac{T}{V}\frac{\partial \ln\mathcal Z}{\partial B}\right)=T\frac{\partial\langle M\rangle}{\partial B}. | ||
\end{align} | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
\section{The fluctuation of magnetized $e^\pm$ plasma } | ||
In our study of magnetization of electron-positron plasma, the partition function of electron-positron plasma is given by | ||
\begin{align} | ||
\begin{split} | ||
\label{boltzmann} | ||
\ln{\cal Z}&\simeq\frac{T^{3}V}{\pi^{2}}\sum_{s'}^{\pm1}\left[\xi_{s'}\cosh{\frac{\mu}{T}}\right]\left(x_{s'}^{2}K_{2}(x_{s'})+\frac{b_{0}}{2}x_{s'}K_{1}(x_{s'})+\frac{b_{0}^{2}}{12}K_{0}(x_{s'})\right)\,, | ||
\end{split}\\ | ||
\label{xfunc} | ||
x_{s'}&=\frac{{\tilde m}_{s'}}{T}=\sqrt{\frac{m_{e}^{2}}{T^{2}}+b_{0}\left(1-\frac{g}{2}s'\right)},\,\qquad b_0=\frac{eB}{T^2}. | ||
\end{align} | ||
We show that the total dimensionless magnetization ${\mathfrak M}$ for the case $g=2$ can be broken into the sum of magnetic moment parallel ${\mathfrak M}_{+}$ and magnetic moment anti-parallel ${\mathfrak M}_{-}$ contributions as follows | ||
\begin{align} | ||
\label{g2mag} | ||
{\mathfrak M}={\mathfrak M}_{+}+{\mathfrak M}_{-},\,\qquad {\mathfrak M}=\frac{e\langle M\rangle}{m_e^2},\qquad \langle M\rangle=\frac{T}{V}\frac{\partial \ln{\mathcal Z}}{\partial B},\end{align} | ||
where ${\mathfrak M}_{+}$ and ${\mathfrak M}_{-}$ are given by | ||
\begin{align} | ||
{\mathfrak M}_{+}&=\frac{e^{2}}{\pi^{2}}\frac{T^{2}}{m_{e}^{2}}\xi\cosh{\frac{\mu}{T}}\left[\frac{1}{2}x_{+}K_{1}(x_{+})+\frac{b_{0}}{6}K_{0}(x_{+})\right],\qquad x_{+}=\frac{m_{e}}{T}, | ||
\end{align} | ||
and | ||
\begin{align} | ||
{\mathfrak M}_{-}&=-\frac{e^{2}}{\pi^{2}}\frac{T^{2}}{m_{e}^{2}}\xi^{-1}\cosh{\frac{\mu}{T}}\left[\left(\frac{1}{2}+\frac{b_{0}^{2}}{12x_{-}^{2}}\right)x_{-}K_{1}(x_{-})+\frac{b_{0}}{3}K_{0}(x_{-})\right], \qquad x_{-}=\sqrt{\frac{m_{e}^{2}}{T^{2}}+2b_{0}} | ||
\end{align} | ||
In this scenario, the fluctuation of magnetized electron-positron plasma can be obtain | ||
\begin{align} | ||
\langle\Delta {M}^2\rangle=T\frac{\partial {\langle M\rangle} }{\partial B}=T\frac{\partial b_0}{\partial B}\frac{\partial {\langle M\rangle} }{\partial b_0}=T\left(\frac{e}{T^2}\right)\frac{\partial}{\partial b_0}\left(\frac{m^2_e}{e}{\mathfrak M}\right)=\frac{m_e^2}{T}\left(\frac{\partial {\mathfrak M}_{+} }{\partial b_0}+\frac{\partial {\mathfrak M} _{-}}{\partial b_0}\right) | ||
\end{align} | ||
where | ||
\begin{align} | ||
\frac{\partial {\mathfrak M}_{+} }{\partial b_0}=\frac{e^{2}}{\pi^{2}}\frac{T^{2}}{m_{e}^{2}}\xi\cosh{\frac{\mu}{T}}\,\left[\frac{1}{6}K_{0}(x_{+})\right],\qquad x_{+}=\frac{m_{e}}{T} | ||
\end{align} | ||
and | ||
\begin{align} | ||
\frac{\partial {\mathfrak M}_{-} }{\partial b_0}=\frac{e^{2}}{\pi^{2}}\frac{T^{2}}{m_{e}^{2}}\xi^{-1}\cosh{\frac{\mu}{T}}\left[\left(\frac{1}{6}+\frac{b^2_0}{12x^2_{-}}\right)K_0(x_{-})+\left(\frac{b_0}{6x_{-}}+\frac{b^2_0}{6x^3_{-}}\right)K_1(x_{-})\right],\qquad x_{-}=\sqrt{\frac{m_{e}^{2}}{T^{2}}+2b_{0}} | ||
\end{align} | ||
In Fig.~\ref{Susc_fig} we plot the $\partial{\mathfrak M}_\pm/\partial b_0$ of the primordial $e^{+}e^{-}$-plasma as a function of temperature, with $g=2$, $\xi=1$, $b_0=10^{-11}$ and $b_0=10^{-3}$. It shows that in the magnetic field we consider $10^{-11}<b_0<10^{-3}$, the dominate term for $\partial{\mathfrak M}_{-}/\partial b_0$ is given by | ||
\begin{align} | ||
\frac{\partial {\mathfrak M}_{-} }{\partial b_0}&\approx\frac{e^{2}}{\pi^{2}}\frac{T^{2}}{m_{e}^{2}}\xi^{-1}\cosh{\frac{\mu}{T}}\left[\left(\frac{1}{6}\right)K_0(x_{-})\right]\approx \frac{\partial {\mathfrak M}_{+} }{\partial b_0}, \qquad \mathrm{for} \,\,10^{-11}<b_0<10^{-3}, | ||
\end{align} | ||
then the fluctuation of magnetized electron-positron plasma can be approximated by | ||
\begin{align} | ||
\langle\Delta {M}^2\rangle=\frac{m_e^2}{T}\left(\frac{\partial {\mathfrak M}_{+} }{\partial b_0}+\frac{\partial {\mathfrak M} _{-}}{\partial b_0}\right)\approx \frac{T}{6}\left(\frac{e^{2}}{\pi^{2}}\right)\cosh{\frac{\mu}{T}}\bigg[\xi K_0(x_+)+\xi^{-1}K_0(x_{-})\bigg] | ||
\end{align} | ||
In Fig.~\ref{Flu_fig} we plot the fluctuation $ \langle\Delta {\mathcal M}^2\rangle/m_e$ nd $\langle\Delta {\mathcal M}^2\rangle/\sqrt{\langle M\rangle}$ as a function of temperature with $g=2$, $\xi=1$, $b_0=10^{-11}$ and $b_0=10^{-3}$. | ||
|
||
|
||
%~~~Figure~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.5\textwidth]{Susceptibility001}\includegraphics[width=0.5\textwidth]{Susceptibility002} | ||
\caption{The $\partial{\mathfrak M}_\pm/\partial b_0$ of the primordial $e^{+}e^{-}$-plasma as a function of temperature, with $g=2$, $\xi=1$, $b_0=10^{-11}$ and $b_0=10^{-3}$.} | ||
\label{Susc_fig} | ||
\end{figure} | ||
%~~~Figure~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
|
||
%~~~Figure~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.5\textwidth]{Fluctuation_Magnetization}\includegraphics[width=0.5\textwidth]{Fluctuation_M002} | ||
\caption{The dimensionless fluctuation $ \langle\Delta {M}^2\rangle/m_e$ and $\langle\Delta {\mathcal M}^2\rangle/\sqrt{\langle M\rangle}$ of the primordial $e^{+}e^{-}$-plasma as a function of temperature, with $g=2$, $\xi=1$, $b_0=10^{-11}$ and $b_0=10^{-3}$.} | ||
\label{Flu_fig} | ||
\end{figure} | ||
|
||
%~~~Figure~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
\begin{thebibliography}{99} | ||
\end{thebibliography} | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Oops, something went wrong.