Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
ajsteinmetz committed Nov 8, 2023
2 parents d4a09f6 + 433ef45 commit 0c6b739
Show file tree
Hide file tree
Showing 14 changed files with 230 additions and 33 deletions.
Binary file added DH13444SteinmetzResponse.pdf
Binary file not shown.
102 changes: 102 additions & 0 deletions Fluctuation_note/2023Nov3MagnetizationFluctuation.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
\documentclass[onecolumn,preprintnumbers,amsmath,amssymb]{revtex4}
\usepackage{graphicx}
\usepackage{float}
\usepackage[usenames,dvipsnames]{color}

\begin{document}
%\preprint{Draft.13}
\title{Fluctuation of Magnetization}
\author{Cheng Tao Yang$^a$, Andrew Steinmetz$^a$, Johann Rafelski$^a$}
\affiliation{$^a$Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA}
\date{\today}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{abstract}
\end{abstract}
\maketitle

\section{Statistical fluctuation of magnetization}
In general, given the magnetic moment $\mu$ the magnetization density of the quantum system is defined as
\begin{align}
\langle M\rangle\equiv\frac{1}{V}\langle \mu\rangle=\frac{1}{V}\left(T\frac{\partial \ln\mathcal Z}{\partial B}\right),\qquad \langle\mu\rangle=\left(T\frac{\partial \ln\mathcal Z}{\partial B}\right)
\end{align}
In statistical mechanical, the mean-square fluctuation of any quantity magnetic moment $\mu$ can be written as
\begin{align}
\langle\Delta \mu^2\rangle=\langle \mu^2\rangle-\langle \mu\rangle^2=T^2\frac{\partial^2 \ln\mathcal Z }{\partial B^2}
\end{align}
In this scenario, the fluctuation of magnetization can be written as
\begin{align}
{\langle\Delta M^2\rangle}=\frac{\langle\Delta \mu^2\rangle}{V}=\frac{T^2}{V}\frac{\partial^2 \ln\mathcal Z }{\partial B^2}=T\frac{\partial}{\partial B}\left(\frac{T}{V}\frac{\partial \ln\mathcal Z}{\partial B}\right)=T\frac{\partial\langle M\rangle}{\partial B}.
\end{align}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{The fluctuation of magnetized $e^\pm$ plasma }
In our study of magnetization of electron-positron plasma, the partition function of electron-positron plasma is given by
\begin{align}
\begin{split}
\label{boltzmann}
\ln{\cal Z}&\simeq\frac{T^{3}V}{\pi^{2}}\sum_{s'}^{\pm1}\left[\xi_{s'}\cosh{\frac{\mu}{T}}\right]\left(x_{s'}^{2}K_{2}(x_{s'})+\frac{b_{0}}{2}x_{s'}K_{1}(x_{s'})+\frac{b_{0}^{2}}{12}K_{0}(x_{s'})\right)\,,
\end{split}\\
\label{xfunc}
x_{s'}&=\frac{{\tilde m}_{s'}}{T}=\sqrt{\frac{m_{e}^{2}}{T^{2}}+b_{0}\left(1-\frac{g}{2}s'\right)},\,\qquad b_0=\frac{eB}{T^2}.
\end{align}
We show that the total dimensionless magnetization ${\mathfrak M}$ for the case $g=2$ can be broken into the sum of magnetic moment parallel ${\mathfrak M}_{+}$ and magnetic moment anti-parallel ${\mathfrak M}_{-}$ contributions as follows
\begin{align}
\label{g2mag}
{\mathfrak M}={\mathfrak M}_{+}+{\mathfrak M}_{-},\,\qquad {\mathfrak M}=\frac{e\langle M\rangle}{m_e^2},\qquad \langle M\rangle=\frac{T}{V}\frac{\partial \ln{\mathcal Z}}{\partial B},\end{align}
where ${\mathfrak M}_{+}$ and ${\mathfrak M}_{-}$ are given by
\begin{align}
{\mathfrak M}_{+}&=\frac{e^{2}}{\pi^{2}}\frac{T^{2}}{m_{e}^{2}}\xi\cosh{\frac{\mu}{T}}\left[\frac{1}{2}x_{+}K_{1}(x_{+})+\frac{b_{0}}{6}K_{0}(x_{+})\right],\qquad x_{+}=\frac{m_{e}}{T},
\end{align}
and
\begin{align}
{\mathfrak M}_{-}&=-\frac{e^{2}}{\pi^{2}}\frac{T^{2}}{m_{e}^{2}}\xi^{-1}\cosh{\frac{\mu}{T}}\left[\left(\frac{1}{2}+\frac{b_{0}^{2}}{12x_{-}^{2}}\right)x_{-}K_{1}(x_{-})+\frac{b_{0}}{3}K_{0}(x_{-})\right], \qquad x_{-}=\sqrt{\frac{m_{e}^{2}}{T^{2}}+2b_{0}}
\end{align}
In this scenario, the fluctuation of magnetized electron-positron plasma can be obtain
\begin{align}
\langle\Delta {M}^2\rangle=T\frac{\partial {\langle M\rangle} }{\partial B}=T\frac{\partial b_0}{\partial B}\frac{\partial {\langle M\rangle} }{\partial b_0}=T\left(\frac{e}{T^2}\right)\frac{\partial}{\partial b_0}\left(\frac{m^2_e}{e}{\mathfrak M}\right)=\frac{m_e^2}{T}\left(\frac{\partial {\mathfrak M}_{+} }{\partial b_0}+\frac{\partial {\mathfrak M} _{-}}{\partial b_0}\right)
\end{align}
where
\begin{align}
\frac{\partial {\mathfrak M}_{+} }{\partial b_0}=\frac{e^{2}}{\pi^{2}}\frac{T^{2}}{m_{e}^{2}}\xi\cosh{\frac{\mu}{T}}\,\left[\frac{1}{6}K_{0}(x_{+})\right],\qquad x_{+}=\frac{m_{e}}{T}
\end{align}
and
\begin{align}
\frac{\partial {\mathfrak M}_{-} }{\partial b_0}=\frac{e^{2}}{\pi^{2}}\frac{T^{2}}{m_{e}^{2}}\xi^{-1}\cosh{\frac{\mu}{T}}\left[\left(\frac{1}{6}+\frac{b^2_0}{12x^2_{-}}\right)K_0(x_{-})+\left(\frac{b_0}{6x_{-}}+\frac{b^2_0}{6x^3_{-}}\right)K_1(x_{-})\right],\qquad x_{-}=\sqrt{\frac{m_{e}^{2}}{T^{2}}+2b_{0}}
\end{align}
In Fig.~\ref{Susc_fig} we plot the $\partial{\mathfrak M}_\pm/\partial b_0$ of the primordial $e^{+}e^{-}$-plasma as a function of temperature, with $g=2$, $\xi=1$, $b_0=10^{-11}$ and $b_0=10^{-3}$. It shows that in the magnetic field we consider $10^{-11}<b_0<10^{-3}$, the dominate term for $\partial{\mathfrak M}_{-}/\partial b_0$ is given by
\begin{align}
\frac{\partial {\mathfrak M}_{-} }{\partial b_0}&\approx\frac{e^{2}}{\pi^{2}}\frac{T^{2}}{m_{e}^{2}}\xi^{-1}\cosh{\frac{\mu}{T}}\left[\left(\frac{1}{6}\right)K_0(x_{-})\right]\approx \frac{\partial {\mathfrak M}_{+} }{\partial b_0}, \qquad \mathrm{for} \,\,10^{-11}<b_0<10^{-3},
\end{align}
then the fluctuation of magnetized electron-positron plasma can be approximated by
\begin{align}
\langle\Delta {M}^2\rangle=\frac{m_e^2}{T}\left(\frac{\partial {\mathfrak M}_{+} }{\partial b_0}+\frac{\partial {\mathfrak M} _{-}}{\partial b_0}\right)\approx \frac{T}{6}\left(\frac{e^{2}}{\pi^{2}}\right)\cosh{\frac{\mu}{T}}\bigg[\xi K_0(x_+)+\xi^{-1}K_0(x_{-})\bigg]
\end{align}
In Fig.~\ref{Flu_fig} we plot the fluctuation $ \langle\Delta {\mathcal M}^2\rangle/m_e$ nd $\langle\Delta {\mathcal M}^2\rangle/\sqrt{\langle M\rangle}$ as a function of temperature with $g=2$, $\xi=1$, $b_0=10^{-11}$ and $b_0=10^{-3}$.


%~~~Figure~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{figure}[ht]
\centering
\includegraphics[width=0.5\textwidth]{Susceptibility001}\includegraphics[width=0.5\textwidth]{Susceptibility002}
\caption{The $\partial{\mathfrak M}_\pm/\partial b_0$ of the primordial $e^{+}e^{-}$-plasma as a function of temperature, with $g=2$, $\xi=1$, $b_0=10^{-11}$ and $b_0=10^{-3}$.}
\label{Susc_fig}
\end{figure}
%~~~Figure~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

%~~~Figure~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{figure}[ht]
\centering
\includegraphics[width=0.5\textwidth]{Fluctuation_Magnetization}\includegraphics[width=0.5\textwidth]{Fluctuation_M002}
\caption{The dimensionless fluctuation $ \langle\Delta {M}^2\rangle/m_e$ and $\langle\Delta {\mathcal M}^2\rangle/\sqrt{\langle M\rangle}$ of the primordial $e^{+}e^{-}$-plasma as a function of temperature, with $g=2$, $\xi=1$, $b_0=10^{-11}$ and $b_0=10^{-3}$.}
\label{Flu_fig}
\end{figure}

%~~~Figure~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{thebibliography}{99}
\end{thebibliography}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}
69 changes: 49 additions & 20 deletions plasma-partition.bbl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\begin{thebibliography}{48}
\begin{thebibliography}{52}
\providecommand{\natexlab}[1]{#1}
\providecommand{\url}[1]{\texttt{#1}}
\expandafter\ifx\csname urlstyle\endcsname\relax
Expand Down Expand Up @@ -79,6 +79,24 @@ C.~Grayson, C.~T. Yang, M.~Formanek, and J.~Rafelski.
\newblock \doi{10.48550/arXiv.2307.11264}.
\newblock [in press in Annals of Physics].

\bibitem[{Pomakov} et~al.(2022){Pomakov}, {O'Sullivan}, {Br{\"u}ggen}, {Vazza},
{Carretti}, {Heald}, {Horellou}, {Shimwell}, {Shulevski}, and
{Vernstrom}]{Pomakov:2022cem}
V.~P. {Pomakov}, S.~P. {O'Sullivan}, M.~{Br{\"u}ggen}, F.~{Vazza},
E.~{Carretti}, G.~H. {Heald}, C.~{Horellou}, T.~{Shimwell}, A.~{Shulevski},
and T.~{Vernstrom}.
\newblock {The redshift evolution of extragalactic magnetic fields}.
\newblock \emph{Monthly Notices of the Royal Astronomical Society},
515\penalty0 (1):\penalty0 256--270, 2022.
\newblock \doi{10.1093/mnras/stac1805}.

\bibitem[Jedamzik and Pogosian(2020)]{Jedamzik:2020krr}
K.~Jedamzik and L.~Pogosian.
\newblock Relieving the hubble tension with primordial magnetic fields.
\newblock \emph{Physical Review Letters}, 125\penalty0 (18):\penalty0 181302,
2020.
\newblock \doi{10.1103/PhysRevLett.125.181302}.

\bibitem[Rafelski et~al.(2018)Rafelski, Formanek, and
Steinmetz]{Rafelski:2017hce}
J.~Rafelski, M.~Formanek, and A.~Steinmetz.
Expand Down Expand Up @@ -115,24 +133,6 @@ R.~Durrer and A.~Neronov.
2013.
\newblock \doi{10.1007/s00159-013-0062-7}.

\bibitem[{Pomakov} et~al.(2022){Pomakov}, {O'Sullivan}, {Br{\"u}ggen}, {Vazza},
{Carretti}, {Heald}, {Horellou}, {Shimwell}, {Shulevski}, and
{Vernstrom}]{Pomakov:2022cem}
V.~P. {Pomakov}, S.~P. {O'Sullivan}, M.~{Br{\"u}ggen}, F.~{Vazza},
E.~{Carretti}, G.~H. {Heald}, C.~{Horellou}, T.~{Shimwell}, A.~{Shulevski},
and T.~{Vernstrom}.
\newblock {The redshift evolution of extragalactic magnetic fields}.
\newblock \emph{Monthly Notices of the Royal Astronomical Society},
515\penalty0 (1):\penalty0 256--270, 2022.
\newblock \doi{10.1093/mnras/stac1805}.

\bibitem[Jedamzik and Pogosian(2020)]{Jedamzik:2020krr}
K.~Jedamzik and L.~Pogosian.
\newblock Relieving the hubble tension with primordial magnetic fields.
\newblock \emph{Physical Review Letters}, 125\penalty0 (18):\penalty0 181302,
2020.
\newblock \doi{10.1103/PhysRevLett.125.181302}.

\bibitem[Birrell et~al.(2014)Birrell, Yang, and Rafelski]{Birrell:2014uka}
J.~Birrell, C.~T. Yang, and J.~Rafelski.
\newblock {Relic Neutrino Freeze-out: Dependence on Natural Constants}.
Expand Down Expand Up @@ -221,7 +221,7 @@ A.~Steinmetz, M.~Formanek, and J.~Rafelski.

\bibitem[Tiesinga et~al.(2021)Tiesinga, Mohr, Newell, and
Taylor]{Tiesinga:2021myr}
Eite Tiesinga, Peter~J. Mohr, David~B. Newell, and Barry~N. Taylor.
E.~Tiesinga, P.~J. Mohr, D.~B. Newell, and B.~N. Taylor.
\newblock {CODATA recommended values of the fundamental physical constants:
2018}.
\newblock \emph{Rev. Mod. Phys.}, 93\penalty0 (2):\penalty0 025010, 2021.
Expand Down Expand Up @@ -262,6 +262,13 @@ T.~Vachaspati.
\newblock \emph{Rept. Prog. Phys.}, 84\penalty0 (7):\penalty0 074901, 2021.
\newblock \doi{10.1088/1361-6633/ac03a9}.

\bibitem[Stoneking et~al.(2020)]{Stoneking:2020egj}
M.~R. Stoneking et~al.
\newblock {A new frontier in laboratory physics: magnetized
electron\textendash{}positron plasmas}.
\newblock \emph{J. Plasma Phys.}, 86\penalty0 (6):\penalty0 155860601, 2020.
\newblock \doi{10.1017/S0022377820001385}.

\bibitem[Gopal and Sethi(2005)]{Gopal:2004ut}
R.~Gopal and S.~Sethi.
\newblock {Generation of magnetic field in the pre-recombination era}.
Expand All @@ -275,6 +282,14 @@ L.~M. Perrone, G.~Gregori, B.~Reville, L.~O. Silva, and R.~Bingham.
\newblock \emph{Phys. Rev. D}, 104\penalty0 (12):\penalty0 123013, 2021.
\newblock \doi{10.1103/PhysRevD.104.123013}.

\bibitem[Boyarsky et~al.(2012)Boyarsky, Frohlich, and
Ruchayskiy]{Boyarsky:2011uy}
A.~Boyarsky, J.~Frohlich, and O.~Ruchayskiy.
\newblock {Self-consistent evolution of magnetic fields and chiral asymmetry in
the early Universe}.
\newblock \emph{Phys. Rev. Lett.}, 108:\penalty0 031301, 2012.
\newblock \doi{10.1103/PhysRevLett.108.031301}.

\bibitem[Evans and Rafelski(2022)]{Evans:2022fsu}
S.~Evans and J.~Rafelski.
\newblock {Emergence of periodic in magnetic moment effective QED action}.
Expand Down Expand Up @@ -316,6 +331,20 @@ E.~J. Ferrer and A.~Hackebill.
\newblock \emph{J. Phys. Conf. Ser.}, 2536\penalty0 (1):\penalty0 012007, 2023.
\newblock \doi{10.1088/1742-6596/2536/1/012007}.

\bibitem[Jedamzik et~al.(2000)Jedamzik, Katalinic, and Olinto]{Jedamzik:1999bm}
K.~Jedamzik, V.~Katalinic, and A.~V. Olinto.
\newblock {A Limit on primordial small scale magnetic fields from CMB
distortions}.
\newblock \emph{Phys. Rev. Lett.}, 85:\penalty0 700--703, 2000.
\newblock \doi{10.1103/PhysRevLett.85.700}.

\bibitem[Kahniashvili et~al.(2013)Kahniashvili, Tevzadze, Brandenburg, and
Neronov]{Kahniashvili:2012uj}
T.~Kahniashvili, A.~G. Tevzadze, A.~Brandenburg, and A.~Neronov.
\newblock {Evolution of Primordial Magnetic Fields from Phase Transitions}.
\newblock \emph{Phys. Rev. D}, 87\penalty0 (8):\penalty0 083007, 2013.
\newblock \doi{10.1103/PhysRevD.87.083007}.

\bibitem[Yan et~al.(2023)Yan, Ma, Ling, Cheng, and Huang]{Yan:2022sxd}
H.~Yan, Z.~Ma, C.~Ling, C.~Cheng, and J.~Huang.
\newblock {First Batch of z \ensuremath{\approx} 11\textendash{}20 Candidate
Expand Down
Binary file modified plasma-partition.pdf
Binary file not shown.
Loading

0 comments on commit 0c6b739

Please sign in to comment.