Skip to content

Commit

Permalink
Recompiled, fixed one typo.
Browse files Browse the repository at this point in the history
  • Loading branch information
ajsteinmetz committed Nov 8, 2023
1 parent a2bdaa0 commit 21782db
Show file tree
Hide file tree
Showing 3 changed files with 50 additions and 21 deletions.
69 changes: 49 additions & 20 deletions plasma-partition.bbl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\begin{thebibliography}{48}
\begin{thebibliography}{52}
\providecommand{\natexlab}[1]{#1}
\providecommand{\url}[1]{\texttt{#1}}
\expandafter\ifx\csname urlstyle\endcsname\relax
Expand Down Expand Up @@ -79,6 +79,24 @@ C.~Grayson, C.~T. Yang, M.~Formanek, and J.~Rafelski.
\newblock \doi{10.48550/arXiv.2307.11264}.
\newblock [in press in Annals of Physics].

\bibitem[{Pomakov} et~al.(2022){Pomakov}, {O'Sullivan}, {Br{\"u}ggen}, {Vazza},
{Carretti}, {Heald}, {Horellou}, {Shimwell}, {Shulevski}, and
{Vernstrom}]{Pomakov:2022cem}
V.~P. {Pomakov}, S.~P. {O'Sullivan}, M.~{Br{\"u}ggen}, F.~{Vazza},
E.~{Carretti}, G.~H. {Heald}, C.~{Horellou}, T.~{Shimwell}, A.~{Shulevski},
and T.~{Vernstrom}.
\newblock {The redshift evolution of extragalactic magnetic fields}.
\newblock \emph{Monthly Notices of the Royal Astronomical Society},
515\penalty0 (1):\penalty0 256--270, 2022.
\newblock \doi{10.1093/mnras/stac1805}.

\bibitem[Jedamzik and Pogosian(2020)]{Jedamzik:2020krr}
K.~Jedamzik and L.~Pogosian.
\newblock Relieving the hubble tension with primordial magnetic fields.
\newblock \emph{Physical Review Letters}, 125\penalty0 (18):\penalty0 181302,
2020.
\newblock \doi{10.1103/PhysRevLett.125.181302}.

\bibitem[Rafelski et~al.(2018)Rafelski, Formanek, and
Steinmetz]{Rafelski:2017hce}
J.~Rafelski, M.~Formanek, and A.~Steinmetz.
Expand Down Expand Up @@ -115,24 +133,6 @@ R.~Durrer and A.~Neronov.
2013.
\newblock \doi{10.1007/s00159-013-0062-7}.

\bibitem[{Pomakov} et~al.(2022){Pomakov}, {O'Sullivan}, {Br{\"u}ggen}, {Vazza},
{Carretti}, {Heald}, {Horellou}, {Shimwell}, {Shulevski}, and
{Vernstrom}]{Pomakov:2022cem}
V.~P. {Pomakov}, S.~P. {O'Sullivan}, M.~{Br{\"u}ggen}, F.~{Vazza},
E.~{Carretti}, G.~H. {Heald}, C.~{Horellou}, T.~{Shimwell}, A.~{Shulevski},
and T.~{Vernstrom}.
\newblock {The redshift evolution of extragalactic magnetic fields}.
\newblock \emph{Monthly Notices of the Royal Astronomical Society},
515\penalty0 (1):\penalty0 256--270, 2022.
\newblock \doi{10.1093/mnras/stac1805}.

\bibitem[Jedamzik and Pogosian(2020)]{Jedamzik:2020krr}
K.~Jedamzik and L.~Pogosian.
\newblock Relieving the hubble tension with primordial magnetic fields.
\newblock \emph{Physical Review Letters}, 125\penalty0 (18):\penalty0 181302,
2020.
\newblock \doi{10.1103/PhysRevLett.125.181302}.

\bibitem[Birrell et~al.(2014)Birrell, Yang, and Rafelski]{Birrell:2014uka}
J.~Birrell, C.~T. Yang, and J.~Rafelski.
\newblock {Relic Neutrino Freeze-out: Dependence on Natural Constants}.
Expand Down Expand Up @@ -221,7 +221,7 @@ A.~Steinmetz, M.~Formanek, and J.~Rafelski.

\bibitem[Tiesinga et~al.(2021)Tiesinga, Mohr, Newell, and
Taylor]{Tiesinga:2021myr}
Eite Tiesinga, Peter~J. Mohr, David~B. Newell, and Barry~N. Taylor.
E.~Tiesinga, P.~J. Mohr, D.~B. Newell, and B.~N. Taylor.
\newblock {CODATA recommended values of the fundamental physical constants:
2018}.
\newblock \emph{Rev. Mod. Phys.}, 93\penalty0 (2):\penalty0 025010, 2021.
Expand Down Expand Up @@ -262,6 +262,13 @@ T.~Vachaspati.
\newblock \emph{Rept. Prog. Phys.}, 84\penalty0 (7):\penalty0 074901, 2021.
\newblock \doi{10.1088/1361-6633/ac03a9}.

\bibitem[Stoneking et~al.(2020)]{Stoneking:2020egj}
M.~R. Stoneking et~al.
\newblock {A new frontier in laboratory physics: magnetized
electron\textendash{}positron plasmas}.
\newblock \emph{J. Plasma Phys.}, 86\penalty0 (6):\penalty0 155860601, 2020.
\newblock \doi{10.1017/S0022377820001385}.

\bibitem[Gopal and Sethi(2005)]{Gopal:2004ut}
R.~Gopal and S.~Sethi.
\newblock {Generation of magnetic field in the pre-recombination era}.
Expand All @@ -275,6 +282,14 @@ L.~M. Perrone, G.~Gregori, B.~Reville, L.~O. Silva, and R.~Bingham.
\newblock \emph{Phys. Rev. D}, 104\penalty0 (12):\penalty0 123013, 2021.
\newblock \doi{10.1103/PhysRevD.104.123013}.

\bibitem[Boyarsky et~al.(2012)Boyarsky, Frohlich, and
Ruchayskiy]{Boyarsky:2011uy}
A.~Boyarsky, J.~Frohlich, and O.~Ruchayskiy.
\newblock {Self-consistent evolution of magnetic fields and chiral asymmetry in
the early Universe}.
\newblock \emph{Phys. Rev. Lett.}, 108:\penalty0 031301, 2012.
\newblock \doi{10.1103/PhysRevLett.108.031301}.

\bibitem[Evans and Rafelski(2022)]{Evans:2022fsu}
S.~Evans and J.~Rafelski.
\newblock {Emergence of periodic in magnetic moment effective QED action}.
Expand Down Expand Up @@ -316,6 +331,20 @@ E.~J. Ferrer and A.~Hackebill.
\newblock \emph{J. Phys. Conf. Ser.}, 2536\penalty0 (1):\penalty0 012007, 2023.
\newblock \doi{10.1088/1742-6596/2536/1/012007}.

\bibitem[Jedamzik et~al.(2000)Jedamzik, Katalinic, and Olinto]{Jedamzik:1999bm}
K.~Jedamzik, V.~Katalinic, and A.~V. Olinto.
\newblock {A Limit on primordial small scale magnetic fields from CMB
distortions}.
\newblock \emph{Phys. Rev. Lett.}, 85:\penalty0 700--703, 2000.
\newblock \doi{10.1103/PhysRevLett.85.700}.

\bibitem[Kahniashvili et~al.(2013)Kahniashvili, Tevzadze, Brandenburg, and
Neronov]{Kahniashvili:2012uj}
T.~Kahniashvili, A.~G. Tevzadze, A.~Brandenburg, and A.~Neronov.
\newblock {Evolution of Primordial Magnetic Fields from Phase Transitions}.
\newblock \emph{Phys. Rev. D}, 87\penalty0 (8):\penalty0 083007, 2013.
\newblock \doi{10.1103/PhysRevD.87.083007}.

\bibitem[Yan et~al.(2023)Yan, Ma, Ling, Cheng, and Huang]{Yan:2022sxd}
H.~Yan, Z.~Ma, C.~Ling, C.~Cheng, and J.~Huang.
\newblock {First Batch of z \ensuremath{\approx} 11\textendash{}20 Candidate
Expand Down
Binary file added plasma-partition.pdf
Binary file not shown.
2 changes: 1 addition & 1 deletion plasma-partition.tex
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ \section{Introduction}
As we see in~\rf{fig:densityratio} at $T>m_ec^2=511\keV$ the $e^{+}e^{-}$-pair abundance was nearly 450 million pairs per baryon, dropping to about 100 million pairs per baryon at the pre-BBN temperature of $T=100\keV$. The number of $e^{+}e^{-}$-pairs is large compared to the residual `unpaired' electrons neutralizing the baryon charge locally down to $T_\mathrm{split}=20.3\keV$. Since electrons and positrons have opposite magnetic moments, the magnetized dense $e^{+}e^{-}$-plasma entails negligible net local spin density in statistical average. The residual very small polarization of unpaired electrons complements the magnetic field induced polarization of the proton component.
As shown in Fig.\,2 in Ref.~\cite{Rafelski:2023emw}, following hadronization of the quark-gluon plasma (QGP) and below about $T\!=\!100\,000\keV$, in terms of energy densitythe early universe's first hour consists of photons, neutrinos and the $e^{+}e^{-}$-pair plasma. Massive dark matter and dark energy are negligible during this era. While we study the magnetic moment polarization of $e^{+}e^{-}$-plasma we do not address here its origin. However, we recall that the pair plasma decouples from the neutrino background near to $T=2000\keV$~\cite{Birrell:2014uka}. Therefore we consider the magnetic properties of the $e^{+}e^{-}$-pair plasma in the temperature range $2000\keV>T>20\keV$ and focus on the range $200\keV>T>20\keV$ where the most rapid antimatter abundance changes occurs and where the Boltzmann approximation is valid. This is notably the final epoch where antimatter exists in large quantities in the cosmos~\cite{Rafelski:2023emw}.
As shown in Fig.\,2 in Ref.~\cite{Rafelski:2023emw}, following hadronization of the quark-gluon plasma (QGP) and below about $T\!=\!100\,000\keV$, in terms of energy density the early universe's first hour consists of photons, neutrinos and the $e^{+}e^{-}$-pair plasma. Massive dark matter and dark energy are negligible during this era. While we study the magnetic moment polarization of $e^{+}e^{-}$-plasma we do not address here its origin. However, we recall that the pair plasma decouples from the neutrino background near to $T=2000\keV$~\cite{Birrell:2014uka}. Therefore we consider the magnetic properties of the $e^{+}e^{-}$-pair plasma in the temperature range $2000\keV>T>20\keV$ and focus on the range $200\keV>T>20\keV$ where the most rapid antimatter abundance changes occurs and where the Boltzmann approximation is valid. This is notably the final epoch where antimatter exists in large quantities in the cosmos~\cite{Rafelski:2023emw}.
The abundance of antimatter shown in~\rf{fig:densityratio} is obtained and discussed in more detail in~\rsec{sec:abundance}. Our analysis in~\rsec{sec:thermal} the four relativistic fermion gases (particle and antiparticle and both polarizations) where the spin and spin-orbit contributions are evaluated in~\rsec{sec:paradia}. The influence of magnetization on the charge chemical potential is determined in~\rsec{sec:chem}. We show in~\rsec{sec:magnetization}, accounting for the matter-antimatter asymmetry present in the universe, that magnetization is nonzero. Our description of relativistic paramagnetism is covered in~\rsec{sec:paramagnetism}. The balance between paramagnetic and diamagnetic response is evaluated as a function of particle gyromagnetic ratio in~\rsec{sec:gfac}. The per-lepton magnetization is examined in~\rsec{sec:perlepton} distinguishing between cosmic and laboratory cases, in the latter case the number of magnetic dipoles is fixed, while in the universe the (comoving) number can vary with $T$.
Expand Down

0 comments on commit 21782db

Please sign in to comment.