Skip to content

Commit

Permalink
to_dataframe() support for some bc list commands
Browse files Browse the repository at this point in the history
  • Loading branch information
pvargasm committed Sep 17, 2024
1 parent 1b82d34 commit b6f9371
Show file tree
Hide file tree
Showing 2 changed files with 386 additions and 12 deletions.
129 changes: 117 additions & 12 deletions src/ansys/mapdl/core/commands.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,9 +52,8 @@
REG_FLOAT_INT = re.compile(
r"[+-]?[0-9]*[.]?[0-9]*[Ee]?[+-]?[0-9]+|\s[0-9]+\s"
) # match number groups
BC_REGREP = re.compile(
r"^\s*([0-9]+)\s*([A-Za-z]+)\s*([0-9]*[.]?[0-9]+)\s+([0-9]*[.]?[0-9]+)"
)
BC_REGREP = re.compile(r"^\s*([0-9]+)\s*([A-Za-z]+)((?:\s+[0-9]*[.]?[0-9]+)+)$")


MSG_NOT_PANDAS = """'Pandas' is not installed or could not be found.
Hence this command is not applicable.
Expand Down Expand Up @@ -105,7 +104,34 @@
"SWLI",
]

CMD_BC_LISTING = ["FLIS", "DLIS"]
CMD_BC_LISTING = [
"DKLI",
"DLLI",
"DALI",
"DLIS",
"FKLI",
"FLIS",
"SFLL",
# "SFAL", Define two integers before label (regex)
# "SFLI", Use two lines to define each BC in the list
# "SFEL", Use two lines to define each BC in the list
"BFKL",
"BFLL",
"BFAL",
]

COLNAMES_BC_LISTING = {
"DKLI": ["KEYPOINT", "LABEL", "REAL", "IMAG", "EXP KEY"],
"DLLI": ["LINE", "LABEL", "REAL", "IMAG", "NAREA"],
"DALI": ["AREA", "LABEL", "REAL", "IMAG"],
"DLIS": ["NODE", "LABEL", "REAL", "IMAG"],
"FKLI": ["KEYPOINT", "LABEL", "REAL", "IMAG"],
"FLIS": ["NODE", "LABEL", "REAL", "IMAG"],
"SFLL": ["LINE", "LABEL", "VALI", "VALJ", "VAL2I", "VAL2J"],
"BFKL": ["KEYPOINT", "LABEL", "VALUE"],
"BFLL": ["LINE", "LABEL", "VALUE"],
"BFAL": ["AREA", "LABEL", "VALUE"],
}

CMD_ENTITY_LISTING = [
"NLIS",
Expand Down Expand Up @@ -793,15 +819,92 @@ class BoundaryConditionsListingOutput(CommandListingOutput):
"""

def bc_colnames(self):
"""Get the column names based on bc list command"""

bc_type = {
"BODY FORCES": "BF",
"SURFACE LOAD": "SF",
"POINT LOAD": "F",
"FORCES": "F",
"CONSTRAINTS": "D",
}

entity = {
"KEYPOINT": "K",
"LINE": "L",
"AREA": "A",
"NODE": "",
"ELEMENT": "E",
}

title = self._get_body()[0]

_bcType = [i for i in bc_type.keys() if i in title]
_entity = [i for i in entity.keys() if i in title]

if _bcType and _entity:

key_bc = bc_type[_bcType[0]] + entity[_entity[0]] + "LIST"
key_bc = key_bc[:4]

if key_bc in COLNAMES_BC_LISTING.keys():

_cols = COLNAMES_BC_LISTING[key_bc]

# Check num columns in data
ldata = []
for line in self.splitlines():
line = line.strip()
# exclude any line containing characters [A-Z] except for E
if line:
items = BC_REGREP.findall(line)
if items:
ldata = list(items[0][:2]) + items[0][2].split()
break

if ldata:
if len(_cols) > len(ldata):
_cols = _cols[: len(ldata)]

return _cols

return None

def get_columns(self):
"""Get the column names for the dataframe.
Returns
-------
List of strings
"""
if self._columns_names:
return self._columns_names

bc_colnames = self.bc_colnames()

if bc_colnames:
return bc_colnames

body = self._get_body()

pairs = list(self._get_data_group_indexes(body))
try:
return body[pairs[0][0]].split()
except:
return None

def _parse_table(self):
"""Parse tabular command output."""
parsed_lines = []
for line in self.splitlines():
line = line.strip()
# exclude any line containing characters [A-Z] except for E
if line:
items = BC_REGREP.findall(line)
if items:
parsed_lines.append(list(items[0]))
parsed_lines.append(list(items[0][:2]) + items[0][2].split())

return parsed_lines

Expand Down Expand Up @@ -838,17 +941,19 @@ def to_dataframe(self):
"""
df = super().to_dataframe(data=self.to_list())
if "NODE" in df.columns:
df["NODE"] = df["NODE"].astype(np.int32, copy=False)

primitives = ["KEYPOINT", "LINE", "AREA", "VOLUME", "NODE", "ELEMENT"]

float_col = ["REAL", "IMAG", "VALUE", "VALI", "VALJ"]

for i in df.columns.intersection(primitives):
df[i] = df[i].astype(np.int32, copy=False)

if "LABEL" in df.columns:
df["LABEL"] = df["LABEL"].astype(str, copy=False)

if "REAL" in df.columns:
df["REAL"] = df["REAL"].astype(np.float64, copy=False)

if "IMAG" in df.columns:
df["IMAG"] = df["IMAG"].astype(np.float64, copy=False)
for i in df.columns.intersection(float_col):
df[i] = df[i].astype(np.float64, copy=False)

return df

Expand Down
Loading

0 comments on commit b6f9371

Please sign in to comment.