Skip to content

Commit

Permalink
Merge pull request #2436 from firedrakeproject/pbrubeck/fix/scpc-weig…
Browse files Browse the repository at this point in the history
…ht-bcs

Fix weights and BCs when assembling the condensed residual in SCPC
  • Loading branch information
dham authored May 19, 2022
2 parents 5c10b51 + af010f8 commit 4e21d1a
Show file tree
Hide file tree
Showing 2 changed files with 86 additions and 1 deletion.
24 changes: 23 additions & 1 deletion firedrake/slate/static_condensation/scpc.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import firedrake.dmhooks as dmhooks
import numpy as np
from firedrake.slate.static_condensation.sc_base import SCBase
from firedrake.matrix_free.operators import ImplicitMatrixContext
from firedrake.petsc import PETSc
Expand Down Expand Up @@ -30,6 +31,8 @@ def initialize(self, pc):
from firedrake.bcs import DirichletBC
from firedrake.function import Function
from firedrake.functionspace import FunctionSpace
from firedrake.parloops import par_loop, INC
from ufl import dx

prefix = pc.getOptionsPrefix() + "condensed_field_"
A, P = pc.getOperators()
Expand Down Expand Up @@ -68,7 +71,7 @@ def initialize(self, pc):
for bc in cxt_bcs:
if bc.function_space().index != c_field:
raise NotImplementedError("Strong BC set on unsupported space")
bcs.append(DirichletBC(Vc, bc.function_arg, bc.sub_domain))
bcs.append(DirichletBC(Vc, 0, bc.sub_domain))

mat_type = PETSc.Options().getString(prefix + "mat_type", "aij")

Expand All @@ -77,6 +80,20 @@ def initialize(self, pc):
self.residual = Function(W)
self.solution = Function(W)

shapes = (Vc.finat_element.space_dimension(),
np.prod(Vc.shape))
domain = "{[i,j]: 0 <= i < %d and 0 <= j < %d}" % shapes
instructions = """
for i, j
w[i,j] = w[i,j] + 1
end
"""
self.weight = Function(Vc)
par_loop((domain, instructions), dx, {"w": (self.weight, INC)},
is_loopy_kernel=True)
with self.weight.dat.vec as wc:
wc.reciprocal()

# Get expressions for the condensed linear system
A_tensor = Tensor(self.bilinear_form)
reduced_sys = self.condensed_system(A_tensor, self.residual, elim_fields)
Expand All @@ -85,6 +102,7 @@ def initialize(self, pc):

# Construct the condensed right-hand side
self._assemble_Srhs = OneFormAssembler(r_expr, tensor=self.condensed_rhs,
bcs=bcs, zero_bc_nodes=True,
form_compiler_parameters=self.cxt.fc_params).assemble

# Allocate and set the condensed operator
Expand Down Expand Up @@ -237,6 +255,10 @@ def forward_elimination(self, pc, x):
with self.residual.dat.vec_wo as v:
x.copy(v)

# Disassemble the incoming right-hand side
with self.residual.split()[self.c_field].dat.vec as vc, self.weight.dat.vec_ro as wc:
vc.pointwiseMult(vc, wc)

# Now assemble residual for the reduced problem
self._assemble_Srhs()

Expand Down
63 changes: 63 additions & 0 deletions tests/slate/test_cg_poisson.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import pytest
from firedrake import *


def run_CG_problem(r, degree, quads=False):
"""
Solves the Dirichlet problem for the elliptic equation:
-div(grad(u)) = f in [0, 1]^2, u = g on the domain boundary.
The source function f and g are chosen such that the analytic
solution is:
u(x, y) = sin(x*pi)*sin(y*pi).
This test uses a CG discretization splitting interior and facet DOFs
and Slate to perform the static condensation and local recovery.
"""

# Set up problem domain
mesh = UnitSquareMesh(2**r, 2**r, quadrilateral=quads)
x = SpatialCoordinate(mesh)
u_exact = sin(x[0]*pi)*sin(x[1]*pi)
f = -div(grad(u_exact))

# Set up function spaces
e = FiniteElement("Lagrange", cell=mesh.ufl_cell(), degree=degree)
Z = FunctionSpace(mesh, MixedElement(InteriorElement(e), FacetElement(e)))
z = Function(Z)
u = sum(split(z))

# Formulate the CG method in UFL
U = (1/2)*inner(grad(u), grad(u))*dx - inner(u, f)*dx
F = derivative(U, z, TestFunction(Z))

params = {'snes_type': 'ksponly',
'mat_type': 'matfree',
'pmat_type': 'matfree',
'ksp_type': 'preonly',
'pc_type': 'python',
'pc_python_type': 'firedrake.SCPC',
'pc_sc_eliminate_fields': '0',
'condensed_field': {'ksp_type': 'preonly',
'pc_type': 'redundant',
"redundant_pc_type": "lu",
"redundant_pc_factor_mat_solver_type": "mumps"}}

bcs = DirichletBC(Z.sub(1), zero(), "on_boundary")
problem = NonlinearVariationalProblem(F, z, bcs=bcs)
solver = NonlinearVariationalSolver(problem, solver_parameters=params)
solver.solve()
return norm(u_exact-u, norm_type="L2")


@pytest.mark.parallel
@pytest.mark.parametrize(('degree', 'quads', 'rate'),
[(3, False, 3.75),
(5, True, 5.75)])
def test_cg_convergence(degree, quads, rate):
import numpy as np
diff = np.array([run_CG_problem(r, degree, quads) for r in range(2, 5)])
conv = np.log2(diff[:-1] / diff[1:])
assert (np.array(conv) > rate).all()

0 comments on commit 4e21d1a

Please sign in to comment.