Skip to content

Commit

Permalink
test with offloading()
Browse files Browse the repository at this point in the history
  • Loading branch information
kaushikcfd committed Sep 22, 2024
1 parent 2eea3c6 commit dd07639
Showing 1 changed file with 115 additions and 0 deletions.
115 changes: 115 additions & 0 deletions tests/test_offloading.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
import pytest
from firedrake import (set_offloading_backend,
offloading, solve, FunctionSpace, TestFunction,
TrialFunction, Function, UnitSquareMesh,
SpatialCoordinate, inner, grad, dx, norm, pi, cos,
assemble)
import firedrake_configuration
from pyop2.backends.cpu import cpu_backend


AVAILABLE_BACKENDS = [cpu_backend]

if firedrake_configuration.get_config()["options"].get("cuda"):
from pyop2.backends.cuda import cuda_backend
AVAILABLE_BACKENDS.append(cuda_backend)


def allclose(a, b, rtol=1e-05, atol=1e-08):
"""
Prefer this routine over np.allclose(...) to allow pycuda/pyopencl arrays
"""
return bool(abs(a - b) < (atol + rtol * abs(b)))


@pytest.mark.parametrize("offloading_backend", AVAILABLE_BACKENDS)
def test_nonlinear_variational_solver(offloading_backend):
set_offloading_backend(offloading_backend)
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)
x, y = SpatialCoordinate(mesh)

a = (inner(grad(u), grad(v)) + inner(u, v)) * dx
f = Function(V)
f.interpolate((1+8*pi*pi)*cos(x*pi*2)*cos(y*pi*2))
L = inner(f, v) * dx
fem_soln = Function(V)
sp = {"mat_type": "matfree",
"ksp_monitor_true_residual": None,
"ksp_converged_reason": None}
with offloading():
solve(a == L, fem_soln, solver_parameters=sp)

f.interpolate(cos(x*pi*2)*cos(y*pi*2))

assert norm(fem_soln-f) < 1e-2

with offloading():
assert norm(fem_soln-f) < 1e-2


@pytest.mark.parametrize("offloading_backend", AVAILABLE_BACKENDS)
def test_linear_variational_solver(offloading_backend):
set_offloading_backend(offloading_backend)
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)
f = Function(V)
x, y = SpatialCoordinate(mesh)
f.interpolate((1+8*pi*pi)*cos(x*pi*2)*cos(y*pi*2))

L = assemble(inner(f, v) * dx)
fem_soln = Function(V)

with offloading():

a = assemble((inner(grad(u), grad(v)) + inner(u, v)) * dx,
mat_type="matfree")
solve(a, fem_soln, L,
solver_parameters={"pc_type": "none",
"ksp_type": "cg",
"ksp_monitor": None})

f.interpolate(cos(x*pi*2)*cos(y*pi*2))

assert norm(fem_soln-f) < 1e-2

with offloading():
assert norm(fem_soln-f) < 1e-2


@pytest.mark.parametrize("offloading_backend", AVAILABLE_BACKENDS)
def test_data_manipulation_on_host(offloading_backend):
set_offloading_backend(offloading_backend)

mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)
f = Function(V)
x, y = SpatialCoordinate(mesh)
f.interpolate((1+8*pi*pi)*cos(x*pi*2)*cos(y*pi*2))

L = assemble(inner(f, v) * dx)
fem_soln = Function(V)

with offloading():

a = assemble((inner(grad(u), grad(v)) + inner(u, v)) * dx,
mat_type="matfree")
solve(a, fem_soln, L,
solver_parameters={"pc_type": "none",
"ksp_type": "cg",
"ksp_monitor": None})

old_norm = norm(fem_soln)
kappa = 2.0
fem_soln.dat.data[:] *= kappa # update data on host

with offloading():
new_norm = norm(fem_soln)

allclose(kappa*old_norm, new_norm)

0 comments on commit dd07639

Please sign in to comment.