-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
tests: Check that interpolation sum factorises for simple cases
On tensor product cells, interpolation of Q/DQ elements should sum factorise to give an operation count that is O(p^{d+1}). Check this works. Additionally check that interpolation of Vector/TensorElement costs only the product of the value_shape more flops than the equivalent scalar element.
- Loading branch information
Showing
1 changed file
with
64 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
from functools import partial | ||
import numpy | ||
import pytest | ||
|
||
from ufl import (Mesh, FunctionSpace, FiniteElement, VectorElement, | ||
TensorElement, Coefficient, | ||
interval, quadrilateral, hexahedron) | ||
|
||
from tsfc.driver import compile_expression_dual_evaluation | ||
from tsfc.finatinterface import create_element | ||
|
||
|
||
@pytest.fixture(params=[interval, quadrilateral, hexahedron], | ||
ids=lambda x: x.cellname()) | ||
def mesh(request): | ||
return Mesh(VectorElement("P", request.param, 1)) | ||
|
||
|
||
@pytest.fixture(params=[FiniteElement, VectorElement, TensorElement], | ||
ids=lambda x: x.__name__) | ||
def element(request, mesh): | ||
if mesh.ufl_cell() == interval: | ||
family = "DP" | ||
else: | ||
family = "DQ" | ||
return partial(request.param, family, mesh.ufl_cell()) | ||
|
||
|
||
def flop_count(mesh, source, target): | ||
Vtarget = FunctionSpace(mesh, target) | ||
Vsource = FunctionSpace(mesh, source) | ||
to_element = create_element(Vtarget.ufl_element()) | ||
expr = Coefficient(Vsource) | ||
kernel = compile_expression_dual_evaluation(expr, to_element) | ||
return kernel.flop_count | ||
|
||
|
||
def test_sum_factorisation(mesh, element): | ||
# Interpolation between sum factorisable elements should cost | ||
# O(p^{d+1}) | ||
degrees = numpy.asarray([2**n - 1 for n in range(2, 9)]) | ||
flops = [] | ||
for lo, hi in zip(degrees - 1, degrees): | ||
flops.append(flop_count(mesh, element(int(lo)), element(int(hi)))) | ||
flops = numpy.asarray(flops) | ||
rates = numpy.diff(numpy.log(flops)) / numpy.diff(numpy.log(degrees)) | ||
assert (rates < (mesh.topological_dimension()+1)).all() | ||
|
||
|
||
def test_sum_factorisation_scalar_tensor(mesh, element): | ||
# Interpolation into tensor elements should cost value_shape | ||
# more than the equivalent scalar element. | ||
degree = 2**7 - 1 | ||
source = element(degree - 1) | ||
target = element(degree) | ||
tensor_flops = flop_count(mesh, source, target) | ||
expect = numpy.prod(target.value_shape()) | ||
if isinstance(target, FiniteElement): | ||
scalar_flops = tensor_flops | ||
else: | ||
target = target.sub_elements()[0] | ||
source = source.sub_elements()[0] | ||
scalar_flops = flop_count(mesh, source, target) | ||
assert numpy.allclose(tensor_flops / scalar_flops, expect, rtol=1e-2) |