Skip to content
/ LTDL Public

A Low-rank Tensor Dictionary Learning Method for Hyperspectral Image Denoising.

Notifications You must be signed in to change notification settings

wc253/LTDL

Repository files navigation

Code: A Low-rank Tensor Dictionary Learning Method for Hyperspectral Image Denoising

All matlab codes of the paper TSP2020 A Low-rank Tensor Dictionary Learning Method for Hyperspectral Image Denoising.
pre_watercolors_MSI

Datasets

CAVE from here
ICVL from here. We downsample the ICVL datasets by msi=msi(1:2:size(msi,1),1:2:size(msi,2), :).
Jasper Ridge from here

Folder structure

Demo_DL_syn.m                    : Detect the object 'road' on denoised jasperRidge HSIs via different methods (Fig. 7, 8). Please run it where we provide the pre‐computing denoising results and you can get the results in Fig. 7 and Fig. 8.
Demo_denoise_ge.m                : Denoise the  CAVE-'watercolors' HSI with generated noise. It needs to take a lot of time so you can test all methods on a cropped HSI. Change noise level by modifying variables "sigma_ratio" in your experiments.
Demo_denoise_v2.m                : Denoise the test ICVL HSIs and the jasperRidge HSI. Set “exp=0” to compare model driven methods with deep learning method (Table IV) and set 'exp=1' to denoise for target detection. To run the deep learning method in this demo, you should first download and install 'MatConvNet'. Please see 'Readme.txt' in the path 'lib\compete_methods\HSI‐DeNet1'.
Demo_target_detection.m          : Evaluate the dictionary learning performance of LTDL with synthetic data (Fig. 4). You can see the pre‐computed results in the road of 'result\pre_synthetic_data_test_once'.
data\
├────HSIDnet_data.mat              :the test ICVL HSI of HSI-DeNet
├────jasperRidge_10band.mat        :the jasperRidge2 HSI for detection
├────watercolors_MSI.mat           :a CAVE HSI
lib\                              
├───LTDL_utilize\           : functions of the proposed LTDL method
├───hyperspectralToolbox\   : HSI detection toolbox https://github.com/isaacgerg/matlabHyperspectralToolbox
├───tensor_toolbox\         : tensor processing toolbox http://www.sandia.gov/~tgkolda/TensorToolbox/index‐2.5.html
├───tensorlab\              : tensor processing toolbox https://www.tensorlab.net/versions.html#3.0
├───quality_assess\         : functions of quality assessment indices http://gr.xjtu.edu.cn/web/dymeng
├───compete_methods\
├───────────────────ksvdbox\     : http://www.cs.technion.ac.il/~ronrubin/software.html
├───────────────────naonlm3d\    : http://personales.upv.es/jmanjon/denoising/arnlm.html
├───────────────────BM3D\        : http://www.cs.tut.fi/~foi/GCF‐BM3D/
├───────────────────BM4D\        : http://www.cs.tut.fi/~foi/GCF‐BM3D/
├───────────────────tensor_dl\   : http://gr.xjtu.edu.cn/web/dymeng
├───────────────────KBRreg\      : http://gr.xjtu.edu.cn/web/dymeng
├───────────────────LLRT\        : http://www.escience.cn/people/changyi/codes.html
├───────────────────HSI-DeNet1\  : http://www.escience.cn/people/changyi/codes.html
├───────────────────MStSVD\      : https://github.com/ZhaomingKong/Hyperspectral_Image_denoising
├───LRTA.m                       : http://gr.xjtu.edu.cn/web/dymeng
├───PARAFAC.m                    : http://gr.xjtu.edu.cn/web/dymeng
├───myPlotROC.m                  : plot ROC curves
├───tight_subplot.m              : create "subplot" axes with adjustable gaps and margins
result\ 
├──────pre_jasperRidge_10band    : the pre-computing results of 'Demo_denoise_v2' for MSI detection
├──────pre_synthetic_data_test_once
├──────pre_watercolors_MSI

Citation

X. Gong, W. Chen and J. Chen, "A Low-Rank Tensor Dictionary Learning Method for Hyperspectral Image Denoising," in IEEE Transactions on Signal Processing, vol. 68, pp. 1168-1180, 2020, doi: 10.1109/TSP.2020.2971441.

We would like to thank those researchers for making their codes and datasets publicly available. If you have any question, please feel free to contact me via: xiaogong@bjtu.edu.cn

About

A Low-rank Tensor Dictionary Learning Method for Hyperspectral Image Denoising.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published