Language modeling. This codebase contains implementation of G-LSTM and F-LSTM cells from [1]. It also might contain some ongoing experiments.
This code was forked from https://github.com/rafaljozefowicz/lm and contains "BIGLSTM" language model baseline from [2].
Current code runs on Tensorflow r1.0 and supports multi-GPU data parallelism using synchronized gradient updates.
On One Billion Words benchmark using 8 GPUs in one DGX-1, BIG G-LSTM G4 was able to achieve 24.29 after 2 weeks of training and 23.36 after 3 weeks.
Not using XLA optimization for now. To be tested. (In all experiments minibatch of 128 per GPU is used)
- SMALLLSTM model on 1xGP100 is getting about ~34K wps.
- SMALLLSTM model on 2xGP100 is getting about ~54.9K wps.
- BIGLSTM model on 1xGP100 is getting about ~4.8K wps
- BIGLSTM model on 2xGP100 is getting about ~8.5K wps
- BIG G-LSTM G4 model on 2xGP100 is getting about ~17.4K wps
- BIG F-LSTM F512 model on 2xGP100 is getting about ~18.5K wps
On DGX-1, from [1], after 1 week of training on DGX-1 using all 8 GPUs. (newer code should be faster).
Model | Perplexity | Steps | WPS |
---|---|---|---|
BIGLSTM | 31.001 | 584.6K | 20.3K |
BIG F-LSTM F512 | 28.11 | 1.217M | 42.9K |
BIG G-LSTM G4 | 28.17 | 1.128M | 41.7K |
BIG G-LSTM G16 | 34.789 | 850.4K | 41.1K |
Exact commit used to produce results from [1]: d98fb110053c187354caf68ff56f5a8535926b5d (should work with TF r1.0)
- TensorFlow r1.0
- Python 2.7 (should work with Python 3 too)
- 1B Word Benchmark Dataset (https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark to get data)
Assuming the data directory is in: /raid/okuchaiev/Data/LM1B/1-billion-word-language-modeling-benchmark-r13output/
, execute:
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
SECONDS=604800
LOGSUFFIX=BIGLSTM
#train
python /home/okuchaiev/repos/f-lm/single_lm_train.py --logdir=/raid/okuchaiev/Workspace/LM/FGLSTM/$LOGSUFFIX --num_gpus=8 --datadir=/raid/okuchaiev/Data/LM1B/1-billion-word-language-modeling-benchmark-r13output/ --hpconfig run_profiler=False,float16_rnn=False,max_time=$SECONDS,num_steps=20,num_shards=8,num_layers=2,learning_rate=0.2,max_grad_norm=1,keep_prob=0.9,emb_size=1024,projected_size=1024,state_size=8192,num_sampled=8192,batch_size=128 > train_$LOGSUFFIX.log 2>&1
#eval
python /home/okuchaiev/repos/f-lm/single_lm_train.py --logdir=/raid/okuchaiev/Workspace/LM/FGLSTM/$LOGSUFFIX --num_gpus=8 --datadir=/raid/okuchaiev/Data/LM1B/1-billion-word-language-modeling-benchmark-r13output/ --mode=eval_full --hpconfig run_profiler=False,float16_rnn=False,max_time=$SECONDS,num_steps=20,num_shards=8,num_layers=2,learning_rate=0.2,max_grad_norm=1,keep_prob=0.9,emb_size=1024,projected_size=1024,state_size=8192,num_sampled=8192,batch_size=16 > eval_full_$LOGSUFFIX.log 2>&1
- To use G-LSTM cell specify
num_of_groups
parameter. - To use F-LSTM cell specify
fact_size
parameter.
The command accepts and additional argument --hpconfig
which allows to override various hyper-parameters, including:
- batch_size=128 - batch size per GPU. Global batch size = batch_size*num_gpus
- num_steps=20 - number of LSTM cell timesteps
- num_shards=8 - embedding and softmax matrices are split into this many shards
- num_layers=1 - numer of LSTM layers
- learning_rate=0.2 - learning rate for optimizer
- max_grad_norm=10.0 - maximum acceptable gradient norm for LSTM layers
- keep_prob=0.9 - dropout keep probability
- optimizer=0 - which optimizer to use: Adagrad(0), Momentum(1), Adam(2), RMSProp(3), SGD(4)
- vocab_size=793470 - vocabluary size
- emb_size=512 - size of the embedding (should be same as projected_size)
- state_size=2048 - LSTM cell size
- projected_size=512 - LSTM projection size
- num_sampled=8192 - training uses sampled softmax, number of samples)
- do_summaries=False - generate weight and grad stats for Tensorboard
- max_time=180 - max time (in seconds) to run
- fact_size - to use F-LSTM cell, this should be set to factor size
- num_of_groups=0 - to use G-LSTM cell, this should be set to number of groups
- save_model_every_min=30 - how often to checkpoint
- save_summary_every_min=16 - how often to save summaries
- use_residual=False - whether to use LSTM residual connections
Forked code and GLSTM/FLSTM cells: okuchaiev@nvidia.com.
- [1] Factorization tricks for LSTM networks, ICLR 2017 workshop.
- [2] Exploring the Limits of Language Modeling