-
Notifications
You must be signed in to change notification settings - Fork 61
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
144 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
from abc import ABCMeta, abstractmethod | ||
from copy import deepcopy | ||
from random import randint, random, shuffle | ||
|
||
|
||
class GeneticAlgorithm: | ||
__metaclass__ = ABCMeta | ||
|
||
population = None | ||
fitnesses = None | ||
|
||
crossover_rate = None | ||
|
||
mutation_rate = None | ||
|
||
cur_steps = None | ||
best_fitness = None | ||
best_member = None | ||
|
||
max_steps = None | ||
max_fitness = None | ||
|
||
def __init__(self, crossover_rate, mutation_rate, max_steps, max_fitness=None): | ||
if isinstance(crossover_rate, float): | ||
if crossover_rate >= 0 and crossover_rate <= 1: | ||
self.crossover_rate = crossover_rate | ||
else: | ||
raise ValueError('Crossover rate must be a float between 0 and 1') | ||
else: | ||
raise ValueError('Crossover rate must be a float between 0 and 1') | ||
|
||
if isinstance(mutation_rate, float): | ||
if mutation_rate >= 0 and mutation_rate <= 1: | ||
self.mutation_rate = mutation_rate | ||
else: | ||
raise ValueError('Mutation rate must be a float between 0 and 1') | ||
else: | ||
raise ValueError('Mutation rate must be a float between 0 and 1') | ||
|
||
if isinstance(max_steps, int) and max_steps > 0: | ||
self.max_steps = max_steps | ||
else: | ||
raise ValueError('Maximum steps must be a positive integer') | ||
|
||
if max_fitness is not None: | ||
if isinstance(max_fitness, (int, float)): | ||
self.max_fitness = float(max_fitness) | ||
else: | ||
raise ValueError('Maximum fitness must be a numeric type') | ||
|
||
def __str__(self): | ||
return ('GENETIC ALGORITHM: \n' + | ||
'CURRENT STEPS: %d \n' + | ||
'BEST FITNESS: %f \n' + | ||
'BEST MEMBER: %s \n\n') % \ | ||
(self.cur_steps, self.best_fitness, str(self.best_member)) | ||
|
||
def __repr__(self): | ||
return self.__str__() | ||
|
||
def _clear(self): | ||
self.cur_steps = 0 | ||
self.population = None | ||
self.fitnesses = None | ||
self.best_member = None | ||
self.best_fitness = None | ||
|
||
@abstractmethod | ||
def _initial_population(self): | ||
pass | ||
|
||
@abstractmethod | ||
def _fitness(self, member): | ||
pass | ||
|
||
def _populate_fitness(self): | ||
self.fitnesses = list([self._fitness(x) for x in self.population]) | ||
|
||
def _most_fit(self): | ||
best_idx = 0 | ||
cur_idx = 0 | ||
for x in self.fitnesses: | ||
if x > self.fitnesses[best_idx]: | ||
best_idx = cur_idx | ||
cur_idx += 1 | ||
return self.population[best_idx], self.fitnesses[best_idx] | ||
|
||
def _select_n(self, n): | ||
shuffle(self.population) | ||
total_fitness = sum(self.fitnesses) | ||
probs = list([self._fitness(x) / total_fitness for x in self.population]) | ||
res = [] | ||
for _ in probs: | ||
r = random() | ||
sum = 0 | ||
for i, x in enumerate(probs): | ||
sum += probs[i] | ||
if r < sum: | ||
res.add(deepcopy(self.population[i])) | ||
return res | ||
|
||
def _crossover(self, parent1, parent2): | ||
partition = randint(0, len(self.population[0] - 1)) | ||
return parent1[0:partition] + parent2[partition:] | ||
|
||
def _mutate(self, member): | ||
if self.mutation_rate >= random(): | ||
idx = randint(0, len(member) - 1) | ||
member[idx] = 1 if member[idx] == 0 else 1 | ||
|
||
def genetic_algorithm(self, verbose=True): | ||
num_copy = int((1 - self.crossover_rate) * len(self.population)) | ||
num_crossover = len(self.population) - num_copy | ||
self._clear() | ||
self.population = self._initial_population() | ||
for i in range(self.max_steps): | ||
self.cur_steps += 1 | ||
|
||
if (i % 100 == 0) and verbose: | ||
print self | ||
|
||
self._populate_fitness() | ||
self.population = self._select_n(num_copy) | ||
|
||
parents = self._select_n(2) | ||
for _ in range(num_crossover): | ||
self.population.append(self._crossover(*parents)) | ||
|
||
self.population = list([self.mutate(x) for x in self.population]) | ||
self._populate_fitness() | ||
|
||
best_member, best_fitness = self._most_fit() | ||
if best_fitness > self.best_fitness: | ||
self.best_fitness = best_fitness | ||
self.best_member = deepcopy(best_member) | ||
|
||
if self.max_fitness is not None and self.best_fitness >= self.max_fitness: | ||
print "TERMINATING - REACHED MAXIMUM FITNESS" | ||
return self.best_member, self.best_fitness | ||
print "TERMINATING - REACHED MAXIMUM STEPS" | ||
return self.best_member, self.best_fitness |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.