Welcome to the course 《Python: from business analytics to Artificial Intelligence》 by AI. FREE Team.
歡迎大家來到 AI. FREE Team 《Python 從商業分析到人工智慧》的第二堂課,機器學習(ML)基礎教學。
- 《Pyhon 從商業分析到人工智慧》系列課程將透過 Google Colab 進行學習。(Google Colab是什麼?)
- 本系列課程將免費提供給中文使用者學習資料科學,但不提供第三方做商業用途。(商業合作請洽AI . FREE Team)
- 本系列課程將從基礎 Python的使用,到人工智慧的開發,讀者歡迎追蹤 粉絲專頁並加入 自由團隊-學習社團。
⭐ 數據與特徵決定了機器學習的上限,而模型和演算法則只是在逼近上限。
⭐ Data and characteristics determine the upper limit of machine learning, and models and algorithms just approach this upper limit.
Topic 5: 機器學習模型 ML Models
監督式學習 Supervised Learning
- 線性迴歸/邏輯迴歸 Linear Regression/Logistic Regression
- 支援向量機 Support Vector Machine, SVM
- 決策樹/隨機森林 Dicision Tree/Random Forest
- 極限梯度提升 eXtreme Gradient Boosting, XGBoost
- K-近鄰演算法 K-Nearest Neighbors, KNN
- 評估模型 Evaluations
非監督式學習 Unsupervised Learning
Topic 5: 機器學習模型 ML Models
監督式學習 Supervised Learning
- 線性迴歸/邏輯迴歸 Linear Regression/Logistic Regression
- 支援向量機 Support Vector Machine, SVM
- 決策樹/隨機森林 Dicision Tree/Random Forest
- 極限梯度提升 eXtreme Gradient Boosting, XGBoost
- K-近鄰演算法 K-Nearest Neighbors, KNN
- 評估模型 Evaluations
非監督式學習 Unsupervised Learning
[1] NumPy
[2] Pandas
[3] Matplotlib
[4] Scikit Learn
[1] Introduction to Pandas apply, applymap and map, B. Chen, May 11, 2020.
[2] How to Use datetime.timedelta in Python With Examples, Miguel Brito, Nov 14, 2020.
[3] An Introduction to Discretization Techniques for Data Scientists, Rohan Gupta, Dec 7, 2019.
[4] Categorical encoding using Label-Encoding and One-Hot-Encoder, Dinesh Yadav, Dec 7, 2019.
[5] PCA — how to choose the number of components ?, Bartosz Mikulski, Jun 3, 2019.
[6] Mean Squared Error or R-Squared – Which one to use ?, Ajitesh Kumar, Sep 30, 2020.
[7] Splitting a Dataset into Train and Test Sets, A. Aylin Tokuç, Jan 14, 2021.
- © Tom Wu (Github)
- © Michelle Chuang (Github)
- © Andy Chan (Github)
(CC BY-NC-SA 4.0)
本教學課程適用 Attribution-NonCommercial-ShareAlike 4.0 International 授權方式。
※ 轉載、改作、分享請附上以下內容:
- 本課程由 AI . FREE Team 原創開發。如有轉載、改作、分享,請註明出處。
- The course is AI . FREE Team original production. If reproduced, modified, or shared, please cite the source.
- (source: https://github.com/AI-FREE-Team/Machine-Learning-Basic )